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Sheaves (reminder)

DEFINITION: An open cover of a topological space X is a family of open
sets {Ui} such that

⋃
iUi = X.

REMARK: The definition of a sheaf below is a more abstract version of the
notion of “sheaf of functions” defined previously.

DEFINITION: A presheaf on a topological space M is a collection of vector
spaces F(U), for each open subset U ⊂ M , together with restriction maps
RUWF(U)−→F(W ) defined for each W ⊂ U , such that for any three open
sets W ⊂ V ⊂ U , RUW = RUV ◦ RVW . Elements of F(U) are called sections
of F over U , and the restriction map often denoted f |W

DEFINITION: A presheaf F is called a sheaf if for any open set U and any
cover U =

⋃
UI the following two conditions are satisfied.

1. Let f ∈ F(U) be a section of F on U such that its restriction to each
Ui vanishes. Then f = 0.

2. Let fi ∈ F(Ui) be a family of sections compatible on the pairwise
intersections: fi|Ui∩Uj = fj|Ui∩Uj for every pair of members of the cover.
Then there exists f ∈ F(U) such that fi is the restriction of f to Ui for
all i.

2



Geometry of manifolds, lecture 7 M. Verbitsky

Ringed spaces (reminder)

DEFINITION: A sheaf of rings is a sheaf F such that all the spaces F(U)

are rings, and all restriction maps are ring homomorphisms.

DEFINITION: A sheaf of functions is a subsheaf in the sheaf of all func-

tions, closed under multiplication.

For simplicity, I assume now that a sheaf of rings is a subsheaf in the

sheaf of all functions.

DEFINITION: A ringed space (M,F) is a topological space equipped with

a sheaf of rings. A morphism (M,F)
Ψ−→ (N,F ′) of ringed spaces is a con-

tinuous map M
Ψ−→ N such that, for every open subset U ⊂ N and every

function f ∈ F ′(U), the function ψ∗f := f ◦Ψ belongs to the ring F
(
Ψ−1(U)

)
.

An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and

Ψ−1 are morphisms of ringed spaces.
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Smooth manifolds (reminder)

DEFINITION: Let (M,F) be a topological manifold equipped with a sheaf

of functions. It is said to be a smooth manifold of class C∞ or Ci if every

point in (M,F) has an open neighborhood isomorphic to the ringed space

(Bn,F ′), where Bn ⊂ Rn is an open ball and F ′ is a ring of functions on an

open ball Bn of this class.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism

ϕ which induces an isomorphisms of ringed spaces, that is, ϕ and ϕ−1 map

(locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class C∞.
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Sheaves of modules (reminder)

REMARK: Let A : ϕ−→B be a ring homomorphism, and V a B-module.

Then V is equipped with a natural A-module structure: av := ϕ(a)v.

DEFINITION: Let F be a sheaf of rings on a topological space M , and

B another sheaf. It is called a sheaf of F-modules if for all U ⊂ M the

space of sections B(U) is equipped with a structure of F(U)-module, and

for all U ′ ⊂ U , the restriction map B(U)
ϕU,U ′−→ B(U ′) is a homomorphism of

F(U)-modules (use the remark above to obtain a structure of F(U)-module

on B(U ′)).

DEFINITION: A free sheaf of modules Fn over a ring sheaf F maps an

open set U to the space F(U)n.

DEFINITION: Locally free sheaf of modules over a sheaf of rings F is a

sheaf of modules B satisfying the following condition. For each x ∈ M there

exists a neighbourhood U 3 x such that the restriction B|U is free.

DEFINITION: A vector bundle on a smooth manifold M is a locally free

sheaf of C∞M-modules.
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Locally trivial fibrations (reminder)

DEFINITION: A smooth map f : X −→ Y is called a locally trivial fi-

bration if each point y ∈ Y has a neighbourhood U 3 y such that f−1(U) is

diffeomorphic to U×F , and the map f : f−1(U) = U×F −→ U is a projection.

In such situation, F is called the fiber of a locally trivial fibration.

DEFINITION: A trivial fibration is a map X × Y −→ Y .

DEFINITION: A vector bundle on Y is a locally trivial fibration f : X −→ Y

with fiber Rn, with each fiber V := f−1(y) equipped with a structure of a

vector space, smoothly depending on y ∈ Y .

THEOREM: This definition is equivalent to the one in terms of sheaves.
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Tensor product

DEFINITION: Let V, V ′ be R-modules, W a free abelian group generated by

v⊗ v′, with v ∈ V, v′ ∈ V ′, and W1 ⊂W a subgroup generated by combinations

rv⊗v′−v⊗ rv′, (v1 +v2)⊗v′−v1⊗v′−v2⊗v′ and v⊗ (v′1 +v′2)−v⊗v′1−v⊗v
′
2.

Define the tensor product V ⊗R V ′ as a quotient group W/W1.

EXERCISE: Show that r · v⊗ v′ 7→ (rv)⊗ v′ defines an R-module structure

on V ⊗R V ′.

REMARK: Let F be a sheaf of rings, and B1 and B2 be sheaves of locally

free (M,F)-modules. Then

U −→B1(U)⊗F(U) B2(U)

is also a locally free sheaf of modules.

DEFINITION: Tensor product of vector bundles is a tensor product of the

corresponding sheaves of modules.

EXERCISE: Let B and B′ ve vector bundles on M , B|x, B′|x their fibers,

and B⊗C∞M B′ their tensor product. Prove that B⊗C∞M B′|x = B|x⊗RB
′|x.
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Dual bundle and bilinear forms

DEFINITION: Let V be an R-module. A dual R-module V ∗ is HomR(V,R)

with the R-module structure defined as follows: r · h(. . . ) 7→ rh(. . . ).

CLAIM: Let B be a vector bundle, that is, a locally free sheaf of C∞M-

modules, and TotB π−→ M its total space. Define B∗(U) as a space of

smooth functions on π−1(U) linear in the fibers of π. Then B∗(U) is a

locally free sheaf over C∞(U).

DEFINITION: This sheaf is called the dual vector bundle, denoted by B∗.
Its fibers are dual to the fibers of B.

DEFINITION: Bilinear form on a bundle B is a section of (B ⊗ B)∗. A

symmetric bilinear form on a real bundle B is called positive definite if it

gives a positive definite form on all fibers of B. Symmetric positive definite

form is also called a metric. A skew-symmetric bilinear form on B is called

non-degenerate if it is non-degenerate on all fibers of B.
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Subbundles

DEFINITION: A subbundle B1 ⊂ B is a subsheaf of modules which is also
a vector bundle, and such that the quotient B/B1 is also a vector bundle.

DEFINITION: Direct sum ⊕ of vector bundles is a direct sum of corre-
sponding sheaves.

EXAMPLE: Let B be a vector bundle equipped with a metric (that is, a
positive definite symmetric form), and B1 ⊂ B a subbundle. Consider a subset
TotB⊥1 ⊂ TotB, consisting of all v ∈ B|x orthogonal to B1|x ⊂ B|x. Then
TotB⊥1 is a total space of a subbundle, denoted as B⊥1 ⊂ B, and we have
an isomorphism B = B1 ⊕ B⊥1 .

REMARK: A total space of a direct sum of vector bundles B ⊕ B′ is home-
omorphic to TotB ×M TotB′.

EXERCISE: Let B be a real vector bundle. Prove that B admits a metric.

PROPOSITION: Let A ⊂ B be a sub-bundle. Then B ∼= A⊕ C.

Proof: Find a positive definite metric on B, and set C := B⊥.
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Pullback

CLAIM: Let M1
ϕ−→ M be a smooth map of manifolds, and B

π−→ M a

total space of a vector bundle. Then B×MM1 is a total space of a vector

bundle on M1.

Proof. Step 1: B ×M M1 is obviously a relative vector space. Indeed,

the fibers of projection π1 : B ×M M1 −→M1 are vector spaces, π−1
1 (m1) =

π−1(ϕ(m1)). It remains only to show that it is locally trivial.

Step 2: Consider an open set U ⊂M that B|U = U×Rn, and let U1 := ϕ−1U .

Then B ×U U1 = U1 × Rn. Since M1 is covered by such U1, this implies

that π1 is a locally trivial fibration, and the additive structure smoothly

depends on m1 ∈M1.

DEFINITION: The bundle π1 : B×M M1 −→M1 is denoted ϕ∗B, and called

inverse image, or a pullback of B.
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The Grassmann algebra

DEFINITION: Let V be a vector space. Denote by ΛiV the space of an-

tisymmetric polylinear i-forms on V ∗, and let Λ∗V :=
⊕

ΛiV . Denote by

T⊗iV the algebra of all polylinear i-forms on V ∗ (“tensor algebra”), and let

Alt : T⊗iV −→ ΛiV be the antisymmetrization,

Alt(η)(x1, ..., xi) :=
1

i!

∑
σ∈Σi

(−1)σ̃η(xσ1, ..., xσi)

where Σi is the group of permutations, and σ̃ = 1 for odd permutations, and

0 for even. Consider the multiplicative operation (“wedge-product”) on Λ∗V ,

denoted by η ∧ ν := Alt(η ⊗ ν). The space Λ∗V with this operation is called

the Grassmann algebra.

REMARK: It is an algebra of anti-commutative polynomials.

Prove the properties of Grassmann algebra:

1. dim ΛiV :=
(

dimV
i

)
, dim Λ∗V = 2dimV .

2. Λ∗(V ⊕W ) = Λ∗(V )⊗ Λ∗(W ).
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