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Sheaves of modules (reminder)

REMARK: Let A: o — B be a ring homomorphism, and V a B-module.
Then V is equipped with a natural A-module structure: av := p(a)wv.

DEFINITION: Let F be a sheaf of rings on a topological space M, and
B another sheaf. It is called a sheaf of F-modules if for all U C M the
space of sections B(U) is equipped with a structure of F(U)-module, and

%
for all U’ C U, the restriction map B(U) vy B(U") is a homomorphism of
F(U)-modules (use the remark above to obtain a structure of F(U)-module
on B(U")).

DEFINITION: A free sheaf of modules F" over a ring sheaf F maps an
open set U to the space F(U)™.

DEFINITION: Locally free sheaf of modules over a sheaf of rings F is a
sheaf of modules B satisfying the following condition. For each x € M there
exists a neighbourhood U > z such that the restriction Bl is free.

DEFINITION: A vector bundle on a smooth manifold M is a locally free

sheaf of C*°M-modules.
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Locally trivial fibrations (reminder)

DEFINITION: A smooth map f: X —Y is called a locally trivial fi-
bration if each point y € Y has a neighbourhood U > y such that f~1(U) is
diffeomorphic to U x F', and the map f: f—l(U) = UxF — U is a projection.
In such situation, F'is called the fiber of a locally trivial fibration.

DEFINITION: A trivial fibrationisa map X xY —Y.
DEFINITION: A vector bundle on Y is a locally trivial fibration f: X — Y
with fiber R"™, with each fiber V = f—l(y) equipped with a structure of a

vector space, smoothly depending on y € Y.

THEOREM: This definition is equivalent to the one in terms of sheaves.
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Tensor product (reminder)

DEFINITION: Let V,V/ be R-modules, W a free abelian group generated by
v®7, with v e V,2»' € V!, and W7 C W a subgroup generated by combinations

ro@v —v@rv, (v +v2) @V —v1 RV —v®v and VR (V] +v5) —vV® V] —V V5.
Define the tensor product V ®r V'’ as a quotient group W/Wj.

EXERCISE: Show that r-v®v' — (rv) ® v’ defines an R-module structure
on VvV ®pg V7.

REMARK: Let F be a sheaf of rings, and By and B, be sheaves of locally
free (M, F)-modules. Then

U— B1(U) @z B2(U)

IS also a locally free sheaf of modules.

DEFINITION: Tensor product of vector bundles is a tensor product of the
corresponding sheaves of modules.

EXERCISE: Let B and B’ ve vector bundles on M, Bl;, B’|z their fibers,
and B®goops B’ their tensor product. Prove that B®cw,s Bl = Blz Qr B -
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Pullback (reminder)

CLAIM: Let M; -2 M be a smooth map of manifolds, and B -+ M a
total space of a vector bundle. Then B x,; M4 is a total space of a vector
bundle on M;.

Proof. Step 1: B x,; M; is obviously a relative vector space. Indeed,
the fibers of projection w1 : B x; M1 — My are vector spaces, wl_l(ml) =
7~ 1(o(m1)). It remains only to show that it is locally trivial.

Step 2: Consider an open set U C M that Bl = U xR", and let Uy := go_lU.
Then B x;; U;p = Up x R". Since M, is covered by such U;j, this implies
that 71 is a locally trivial fibration, and the additive structure smoothly
depends on m; € M7. =

DEFINITION: The bundle w1 : B x; M1 — My is denoted ¢*B, and called
iInverse image, or a pullback of B.
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Algebras represented by generators and relations

DEFINITION: Let V be a vector space. Free or tensor algebra generated
by V is an algebra T(V) := @, V¥ with multiplivation given by z -y = 2 ® v.
The zero component V®O is identified with the ground field. Thus, T(V) is
an algebra with unit.

DEFINITION: Let V be a vector space over the ground field k, called “the
space of generators”, and W C T'(V) another space called “the space of
relations” . Consider the quotient space A = T(Vj;‘(/[‘//%(v), where T'(V)WT(V)
is a subspace of T'(V) generated by vectors vwv’, where w € W, v,v' € T(V).
Then A is is equipped with a natural structure of an algebra with unit, in such
a way that the quotient map T(V) — A is an isomorphism. The algebra A

IS called algebra generated by generators and relations.

EXAMPLE: Let V be a vector space with a bilinear symmetric form g :
V ® V. — R. Consider the algebra CI(V) generated by V, with relations

v1 - v + v vy = g(vy,v2) - 1,
for all v1,vo € V. This algebra is called Clifford algebra over k.
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Graded algebras

DEFINITION: An algebra A is called graded if A is represented as A = @ A?,
where i € Z, and the product satisfies A?- A7 ¢ A*tJ. Instead @ A* one often
writes A*, where x denotes all indices together. Some of the spaces A can
be zero, but the ground field is always assumed to belong in AV,

EXAMPLE: The tensor algebra T'(V) and the polynomial algebra Sym*(V)
are obviously graded.

DEFINITION: A subspace W C A* of a graded algebra is called graded if
W is a direct sum of components W* c At

EXERCISE: Let W Cc T(V) be a graded subspace. Then the algebra gen-
erated by V with relation space W is also graded.
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The Grassmann algebra

DEFINITION: Let V be a vector space, and W C V®V a graded subspace,
generated by vectors xr @y +y® x and z ® z, for all z,y € V. A graded
algebra defined by the generator space V and the relation space W is called
Grassmann algebra, or exterior algebra, and denoted A*(V). The space
AY (V) is called i-th exterior power of V, and the multiplication in A*(V) —
exterior multiplication. Exterior multiplication is denoted A.

REMARK: Grassmann algebra is a a Clifford algebra with the symmetric
form g = 0.

EXERCISE: Prove that AlV is iIsomorphic to V.

DEFINITION: An element of Grassmann algebra is called even if it lies in
D,z NH(V) and odd if it lies in @,cz A2 T1(V). For an even or odd x € A*(V),
we define a number x called parity of x. The parity of x is O for even x and
1 for odd.

CLAIM: In Grassmann algebra, z Ay = (—1)%y A z.
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Signature of a permutation

CLAIM: Let z1,zo,... be a basis in V 2 AlV. Then the set of vectors
Ti, Nxins NTig A -, FOr all i <ip <iz < ... is a basis in A*(V).

COROLLARY: Let V be a d-dimensional vector space. Then dimA4(V) =
(Z) In particular, dim A%V = 1.

DEFINITION: The space A%V is called the space of determinant vectors
on V.

CLAIM: Let V be a d-dimensional vector space, z1,xo,...,x4 its basis, and
det :=x1 Axzo Azxz3--- ANxg the corresponding determinant vector in AV . For
a given permutation I = (i1,io,...,19) consider a vector I(det) := z;, A x;, A
Ty ANx;,. Then [(det) = +det. This correspondence gives a homomor-
phism o from the group S; of permutations to {+1}.

REMARK: This homomorphism maps a product of odd number of
transpositions to -1 and a product of even number of transpositions
to 1.

DEFINITION: The number o(I) is called signature of a permitation I.
Permutation I is called odd if ¢(I) = —1 and even if (1) = 1.
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Antisymmetrization

DEFINITION: Let V be a vector space, T®'V the i-th tensor power of V,
and Alt: T®V — A'V be the antisymmetrization,

1 ~
Alt(n) (@1, zi) == > (=1)7n(2oy, ..., To;)
7! oES;

where 2_; is the group of permutations, and ¢ = 1 for odd permutations,
and O for even. We say that a vector n € V®d s totally antisymmetric if

n = Alt(n).

EXERCISE: Let n € V®? be a vector which satisfies n = 5(—1)% Y ¢g, 1(n).
Prove that I(n) = (—1)%n for any permutation o € S,.

REMARK: This implies that Alt(Alt(n)) = Alt(n) for any n € V®q,

CLAIM: Let W C V ® V be the space of relations of Grassmann algebra
defined above. Then AIt(T (V) -W -T(V)) = 0.

COROLLARY: This defines a natural linear map Vv from A*(V) to the
space im Alt of totally antisymmetric tensors.
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Antisymmetric tensors and Grassmann algebra
CLAIM: The map W gives an isomorphism of A*(V) and im Alt.

Proof. Step 1: Since im Alt is generated by antisymmetrizations of monomi-
als z;, ®z;, ®...®z;, and all these monomials belong to im W, W is surjective.

Step 2: These antisymmetrizations are linearly independent in the tensor
algebra T'(V), because they all contain different tensor monomials. This
implies that the basis in A*(V) is mapped into linearly independent elements
of imAIt, and W is injective. =

REMARK: From now on, we identify A*(V) and the space of totally
antisymmetric tensors.

REMARK: This identification defines multiplicative structure on the
space im Alt of totally antisymmetric tensors.

CLAIM: The multiplicative structure on im Alt can be written as follows.
Given totally antisymmetric tensors a,8 € imAlt, to find a A B € ImAIt =
A*(V), we muptiply « and g in T(V) and apply Alt.

Proof: It suffices to check this on monomials. =
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Determinant

REMARK: Let W be a one-dimensional vector space over k. Then End W
IS naturally isomorphic to k.

REMARK: Let A € End(V) be a linear endomorphism of a vector space V.
Then the action of A on V = AlV is uniquely extended to a multiplicative
homomorphism of the algebra A*V.

DEFINITION: Let V be a d-dimensional vector space and A € End(V). Con-
sider the induced endomorphism of the space of determinant vectors /\d(V)
denoted as det A € End(A%(V)). Since A%(V) is 1-dimensional, the space
End(A%(V)) is naturally identified with k. This allows to consider det A as a
number, that is, an element of k. This number is called determinant of A.

REMARK: From the definition it is clear that det defines a homomorphism
from the group GL(V) if invertible matrices to the multiplicative group
k* of the ground field.
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Determinant bundle

DEFINITION: A line bundle is a 1-dimensional vector bundle.

EXERCISE: Let M be a simply connected manifold. Prove that any real
line bundle on M is trivial.

DEFINITION: Let B be a vector bundle of rank n, and A"B its top exterior
product. This bundle is called determinant bundle of B.

REMARK: It is a line bundle.

REMARK: Let M be an n-manifold, and A" T'M a determinant bundle of its
tangent bundle. Prove that A™T'M is trivial if and only if M is orientable.

DEFINITION: A real vector bundle is called orientable if its determinant
bundle is trivial.

DEFINITION: A manifold is called orientable if its tangent bundle is ori-

entable.
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Cotangent bundle

DEFINITION: Let M be a smooth manifold, T M the tangent bundle, and
ALM = T*M its dual bundle. It is called cotangent bundle of M. Sections
of T*M are called 1-forms or covectors on M. For any f € C°°M, consider
a functional TM — C°°M obtained by mapping X € T'M to a derivation of
f: X — Dx(f). Since this map is linear in X, it defines a section df € T*M
called the differential of f.

CLAIM: AlM is generated as a C>°M-module by d(C®°M).

Proof: Locally in coordinates xzq,...,xn this is clear, because the covectors
dxy,...,dz, dive a basis in T*M dual to the basis %, ... % in TM. m

xl, ey dxn

DEFINITION: Let M be a smooth manifold. A bundle of differential
i-forms on M is the bundle A'T*M of antisymmetric i-forms on TM. It is
denoted A*M.

REMARK: NOM = C>®M.
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De Rham algebra

DEFINITION: Let o € (V¥)® and a € (V*)® be polylinear forms on V.
Define the tensor multiplication a ® g as

a B(xla ceey xz—l—]) L= Oé(a?]_, sy ZCJ)B(CEZ_|_]_, ceey mz—l—])

DEFINITION: Let ®.T*M -5 A*M be the antisymmetrization map,

1

N(a)(x1,...,2n) = Z (—1)%a(xoqy; Togy s Tap)-

n: oceSym,,
Define the exterior multiplication A : A'M x ANNM — NTIM as a A B =

N(a® B), where a® B is a section A'M ® NVM C ®;4,;T*M obtained as their
tensor multiplication.

REMARK: The fiber of the bundle A*M at z € M is identified with the
Grassmann algebra A*T 7M. This identification is compatible with the Grass-
mann product.

DEFINITION: Let ¢q,...,t, be coordinate functions on R", and a € A*R"
a monomial obtained as a product of several dt;: « = dt;; Ndt, N\ ... N\di;,
11 <12 < ...< 1. T'hen « is called a coordinate monomial.
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