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Sheaves of modules (reminder)

REMARK: Let A : ϕ−→B be a ring homomorphism, and V a B-module.

Then V is equipped with a natural A-module structure: av := ϕ(a)v.

DEFINITION: Let F be a sheaf of rings on a topological space M , and

B another sheaf. It is called a sheaf of F-modules if for all U ⊂ M the

space of sections B(U) is equipped with a structure of F(U)-module, and

for all U ′ ⊂ U , the restriction map B(U)
ϕU,U ′−→ B(U ′) is a homomorphism of

F(U)-modules (use the remark above to obtain a structure of F(U)-module

on B(U ′)).

DEFINITION: A free sheaf of modules Fn over a ring sheaf F maps an

open set U to the space F(U)n.

DEFINITION: Locally free sheaf of modules over a sheaf of rings F is a

sheaf of modules B satisfying the following condition. For each x ∈ M there

exists a neighbourhood U 3 x such that the restriction B|U is free.

DEFINITION: A vector bundle on a smooth manifold M is a locally free

sheaf of C∞M-modules.
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Locally trivial fibrations (reminder)

DEFINITION: A smooth map f : X −→ Y is called a locally trivial fi-

bration if each point y ∈ Y has a neighbourhood U 3 y such that f−1(U) is

diffeomorphic to U×F , and the map f : f−1(U) = U×F −→ U is a projection.

In such situation, F is called the fiber of a locally trivial fibration.

DEFINITION: A trivial fibration is a map X × Y −→ Y .

DEFINITION: A vector bundle on Y is a locally trivial fibration f : X −→ Y

with fiber Rn, with each fiber V := f−1(y) equipped with a structure of a

vector space, smoothly depending on y ∈ Y .

THEOREM: This definition is equivalent to the one in terms of sheaves.

3



Geometry of manifolds, lecture 8 M. Verbitsky

Tensor product (reminder)

DEFINITION: Let V, V ′ be R-modules, W a free abelian group generated by

v⊗ v′, with v ∈ V, v′ ∈ V ′, and W1 ⊂W a subgroup generated by combinations

rv⊗v′−v⊗ rv′, (v1 +v2)⊗v′−v1⊗v′−v2⊗v′ and v⊗ (v′1 +v′2)−v⊗v′1−v⊗v
′
2.

Define the tensor product V ⊗R V ′ as a quotient group W/W1.

EXERCISE: Show that r · v⊗ v′ 7→ (rv)⊗ v′ defines an R-module structure

on V ⊗R V ′.

REMARK: Let F be a sheaf of rings, and B1 and B2 be sheaves of locally

free (M,F)-modules. Then

U −→B1(U)⊗F(U) B2(U)

is also a locally free sheaf of modules.

DEFINITION: Tensor product of vector bundles is a tensor product of the

corresponding sheaves of modules.

EXERCISE: Let B and B′ ve vector bundles on M , B|x, B′|x their fibers,

and B⊗C∞M B′ their tensor product. Prove that B⊗C∞M B′|x = B|x⊗RB
′|x.
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Pullback (reminder)

CLAIM: Let M1
ϕ−→ M be a smooth map of manifolds, and B

π−→ M a

total space of a vector bundle. Then B×MM1 is a total space of a vector

bundle on M1.

Proof. Step 1: B ×M M1 is obviously a relative vector space. Indeed,

the fibers of projection π1 : B ×M M1 −→M1 are vector spaces, π−1
1 (m1) =

π−1(ϕ(m1)). It remains only to show that it is locally trivial.

Step 2: Consider an open set U ⊂M that B|U = U×Rn, and let U1 := ϕ−1U .

Then B ×U U1 = U1 × Rn. Since M1 is covered by such U1, this implies

that π1 is a locally trivial fibration, and the additive structure smoothly

depends on m1 ∈M1.

DEFINITION: The bundle π1 : B×M M1 −→M1 is denoted ϕ∗B, and called

inverse image, or a pullback of B.
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Algebras represented by generators and relations

DEFINITION: Let V be a vector space. Free or tensor algebra generated

by V is an algebra T (V ) :=
⊕
i V
⊗i with multiplivation given by x · y = x ⊗ y.

The zero component V ⊗0 is identified with the ground field. Thus, T (V ) is

an algebra with unit.

DEFINITION: Let V be a vector space over the ground field k, called “the

space of generators”, and W ⊂ T (V ) another space called “the space of

relations”. Consider the quotient space A := T (V )
T (V )WT (V ), where T (V )WT (V )

is a subspace of T (V ) generated by vectors vwv′, where w ∈ W , v, v′ ∈ T (V ).

Then A is is equipped with a natural structure of an algebra with unit, in such

a way that the quotient map T (V )−→A is an isomorphism. The algebra A

is called algebra generated by generators and relations.

EXAMPLE: Let V be a vector space with a bilinear symmetric form g :

V ⊗ V −→ R. Consider the algebra Cl(V ) generated by V , with relations

v1 · v2 + v2 · v1 = g(v1, v2) · 1,

for all v1, v2 ∈ V . This algebra is called Clifford algebra over k.
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Graded algebras

DEFINITION: An algebra A is called graded if A is represented as A =
⊕
Ai,

where i ∈ Z, and the product satisfies Ai · Aj ⊂ Ai+j. Instead
⊕
Ai one often

writes A∗, where ∗ denotes all indices together. Some of the spaces Ai can

be zero, but the ground field is always assumed to belong in A0.

EXAMPLE: The tensor algebra T (V ) and the polynomial algebra Sym∗(V )

are obviously graded.

DEFINITION: A subspace W ⊂ A∗ of a graded algebra is called graded if

W is a direct sum of components W i ⊂ Ai.

EXERCISE: Let W ⊂ T (V ) be a graded subspace. Then the algebra gen-

erated by V with relation space W is also graded.
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The Grassmann algebra

DEFINITION: Let V be a vector space, and W ⊂ V ⊗ V a graded subspace,

generated by vectors x ⊗ y + y ⊗ x and x ⊗ x, for all x, y ∈ V . A graded

algebra defined by the generator space V and the relation space W is called

Grassmann algebra, or exterior algebra, and denoted Λ∗(V ). The space

Λi(V ) is called i-th exterior power of V , and the multiplication in Λ∗(V ) –

exterior multiplication. Exterior multiplication is denoted ∧.

REMARK: Grassmann algebra is a a Clifford algebra with the symmetric

form g = 0.

EXERCISE: Prove that Λ1V is isomorphic to V .

DEFINITION: An element of Grassmann algebra is called even if it lies in⊕
i∈Z Λ2i(V ) and odd if it lies in

⊕
i∈Z Λ2i+1(V ). For an even or odd x ∈ Λ∗(V ),

we define a number x̃ called parity of x. The parity of x is 0 for even x and

1 for odd.

CLAIM: In Grassmann algebra, x ∧ y = (−1)x̃ỹy ∧ x.
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Signature of a permutation

CLAIM: Let x1, x2, . . . be a basis in V ∼= Λ1V . Then the set of vectors
xi1 ∧ xi2 ∧ xi3 ∧ · · · , for all i1 < i2 < i3 < . . . is a basis in Λ∗(V ).

COROLLARY: Let V be a d-dimensional vector space. Then dim Λd(V ) =(
n
d

)
. In particular, dim ΛdV = 1.

DEFINITION: The space ΛdV is called the space of determinant vectors
on V .

CLAIM: Let V be a d-dimensional vector space, x1, x2, . . . , xd its basis, and
det := x1 ∧ x2 ∧ x3 · · · ∧ xd the corresponding determinant vector in ΛdV . For
a given permutation I = (i1, i2, . . . , id) consider a vector I(det) := xi1 ∧ xi2 ∧
xi3 · · · ∧ xid. Then I(det) = ±det. This correspondence gives a homomor-
phism σ from the group Sd of permutations to {±1}.

REMARK: This homomorphism maps a product of odd number of
transpositions to -1 and a product of even number of transpositions
to 1.

DEFINITION: The number σ(I) is called signature of a permitation I.
Permutation I is called odd if σ(I) = −1 and even if σ(I) = 1.
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Antisymmetrization

DEFINITION: Let V be a vector space, T⊗iV the i-th tensor power of V ,

and Alt : T⊗iV −→ ΛiV be the antisymmetrization,

Alt(η)(x1, ..., xi) :=
1

i!

∑
σ∈Σi

(−1)σ̃η(xσ1, ..., xσi)

where Σi is the group of permutations, and σ̃ = 1 for odd permutations,

and 0 for even. We say that a vector η ∈ V ⊗d is totally antisymmetric if

η = Alt(η).

EXERCISE: Let η ∈ V ⊗d be a vector which satisfies η = 1
d!(−1)σ̃

∑
I∈Sd I(η).

Prove that I(η) = (−1)σ̃η for any permutation σ ∈ Sd.

REMARK: This implies that Alt(Alt(η)) = Alt(η) for any η ∈ V ⊗d.

CLAIM: Let W ⊂ V ⊗ V be the space of relations of Grassmann algebra

defined above. Then Alt(T (V ) ·W · T (V )) = 0.

COROLLARY: This defines a natural linear map Ψ from Λ∗(V ) to the

space im Alt of totally antisymmetric tensors.
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Antisymmetric tensors and Grassmann algebra

CLAIM: The map Ψ gives an isomorphism of Λ∗(V ) and im Alt.

Proof. Step 1: Since im Alt is generated by antisymmetrizations of monomi-
als xi1⊗xi2⊗ ...⊗xid, and all these monomials belong to im Ψ, Ψ is surjective.

Step 2: These antisymmetrizations are linearly independent in the tensor
algebra T (V ), because they all contain different tensor monomials. This
implies that the basis in Λ∗(V ) is mapped into linearly independent elements
of im Alt, and Ψ is injective.

REMARK: From now on, we identify Λ∗(V ) and the space of totally
antisymmetric tensors.

REMARK: This identification defines multiplicative structure on the
space im Alt of totally antisymmetric tensors.

CLAIM: The multiplicative structure on im Alt can be written as follows.
Given totally antisymmetric tensors α, β ∈ im Alt, to find α ∧ β ∈ im Alt =
Λ∗(V ), we muptiply α and β in T (V ) and apply Alt.

Proof: It suffices to check this on monomials.
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Determinant

REMARK: Let W be a one-dimensional vector space over k. Then EndW

is naturally isomorphic to k.

REMARK: Let A ∈ End(V ) be a linear endomorphism of a vector space V .

Then the action of A on V ∼= Λ1V is uniquely extended to a multiplicative

homomorphism of the algebra Λ∗V .

DEFINITION: Let V be a d-dimensional vector space and A ∈ End(V ). Con-

sider the induced endomorphism of the space of determinant vectors Λd(V )

denoted as detA ∈ End(Λd(V )). Since Λd(V ) is 1-dimensional, the space

End(Λd(V )) is naturally identified with k. This allows to consider detA as a

number, that is, an element of k. This number is called determinant of A.

REMARK: From the definition it is clear that det defines a homomorphism

from the group GL(V ) if invertible matrices to the multiplicative group

k∗ of the ground field.

12



Geometry of manifolds, lecture 8 M. Verbitsky

Determinant bundle

DEFINITION: A line bundle is a 1-dimensional vector bundle.

EXERCISE: Let M be a simply connected manifold. Prove that any real

line bundle on M is trivial.

DEFINITION: Let B be a vector bundle of rank n, and ΛnB its top exterior

product. This bundle is called determinant bundle of B.

REMARK: It is a line bundle.

REMARK: Let M be an n-manifold, and ΛnTM a determinant bundle of its

tangent bundle. Prove that ΛnTM is trivial if and only if M is orientable.

DEFINITION: A real vector bundle is called orientable if its determinant

bundle is trivial.

DEFINITION: A manifold is called orientable if its tangent bundle is ori-

entable.
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Cotangent bundle

DEFINITION: Let M be a smooth manifold, TM the tangent bundle, and

Λ1M = T ∗M its dual bundle. It is called cotangent bundle of M . Sections

of T ∗M are called 1-forms or covectors on M . For any f ∈ C∞M , consider

a functional TM −→ C∞M obtained by mapping X ∈ TM to a derivation of

f : X −→DX(f). Since this map is linear in X, it defines a section df ∈ T ∗M
called the differential of f .

CLAIM: Λ1M is generated as a C∞M-module by d(C∞M).

Proof: Locally in coordinates x1, ..., xn this is clear, because the covectors

dx1, ..., dxn dive a basis in T ∗M dual to the basis d
dx1

, ..., d
dxn

in TM .

DEFINITION: Let M be a smooth manifold. A bundle of differential

i-forms on M is the bundle ΛiT ∗M of antisymmetric i-forms on TM . It is

denoted ΛiM .

REMARK: Λ0M = C∞M .
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De Rham algebra

DEFINITION: Let α ∈ (V ∗)⊗i and α ∈ (V ∗)⊗j be polylinear forms on V .

Define the tensor multiplication α⊗ β as

α⊗ β(x1, ..., xi+j) := α(x1, ..., xj)β(xi+1, ..., xi+j).

DEFINITION: Let
⊗
k T
∗M Π−→ ΛkM be the antisymmetrization map,

Π(α)(x1, ..., xn) :=
1

n!

∑
σ∈Symn

(−1)σα(xσ1, xσ2, ..., xσn).

Define the exterior multiplication ∧ : ΛiM × ΛjM −→ Λi+jM as α ∧ β :=

Π(α⊗ β), where α⊗ β is a section ΛiM ⊗ ΛjM ⊂
⊗
i+j T

∗M obtained as their

tensor multiplication.

REMARK: The fiber of the bundle Λ∗M at x ∈ M is identified with the

Grassmann algebra Λ∗T ∗xM. This identification is compatible with the Grass-

mann product.

DEFINITION: Let t1, ..., tn be coordinate functions on Rn, and α ∈ Λ∗Rn

a monomial obtained as a product of several dti: α = dti1 ∧ dti2 ∧ ... ∧ dtik
i1 < i2 < ... < ik. Then α is called a coordinate monomial.
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