Geometry of manifolds

lecture 8

Misha Verbitsky

Université Libre de Bruxelles

November 23, 2015

M. Verbitsky

Sheaves of modules (reminder)

REMARK: Let $A : \varphi \longrightarrow B$ be a ring homomorphism, and V a B-module. Then V is equipped with a natural A-module structure: $av := \varphi(a)v$.

DEFINITION: Let \mathcal{F} be a sheaf of rings on a topological space M, and \mathcal{B} another sheaf. It is called a sheaf of \mathcal{F} -modules if for all $U \subset M$ the space of sections $\mathcal{B}(U)$ is equipped with a structure of $\mathcal{F}(U)$ -module, and for all $U' \subset U$, the restriction map $\mathcal{B}(U) \xrightarrow{\varphi_{U,U'}} \mathcal{B}(U')$ is a homomorphism of $\mathcal{F}(U)$ -modules (use the remark above to obtain a structure of $\mathcal{F}(U)$ -module on $\mathcal{B}(U')$).

DEFINITION: A free sheaf of modules \mathcal{F}^n over a ring sheaf \mathcal{F} maps an open set U to the space $\mathcal{F}(U)^n$.

DEFINITION: Locally free sheaf of modules over a sheaf of rings \mathcal{F} is a sheaf of modules \mathcal{B} satisfying the following condition. For each $x \in M$ there exists a neighbourhood $U \ni x$ such that the restriction $\mathcal{B}|_U$ is free.

DEFINITION: A vector bundle on a smooth manifold M is a locally free sheaf of $C^{\infty}M$ -modules.

Locally trivial fibrations (reminder)

DEFINITION: A smooth map $f : X \longrightarrow Y$ is called a locally trivial fibration if each point $y \in Y$ has a neighbourhood $U \ni y$ such that $f^{-1}(U)$ is diffeomorphic to $U \times F$, and the map $f : f^{-1}(U) = U \times F \longrightarrow U$ is a projection. In such situation, F is called **the fiber** of a locally trivial fibration.

DEFINITION: A trivial fibration is a map $X \times Y \longrightarrow Y$.

DEFINITION: A vector bundle on Y is a locally trivial fibration $f : X \longrightarrow Y$ with fiber \mathbb{R}^n , with each fiber $V := f^{-1}(y)$ equipped with a structure of a vector space, smoothly depending on $y \in Y$.

THEOREM: This definition is equivalent to the one in terms of sheaves.

Tensor product (reminder)

DEFINITION: Let V, V' be R-modules, W a free abelian group generated by $v \otimes v'$, with $v \in V, v' \in V'$, and $W_1 \subset W$ a subgroup generated by combinations $rv \otimes v' - v \otimes rv'$, $(v_1 + v_2) \otimes v' - v_1 \otimes v' - v_2 \otimes v'$ and $v \otimes (v'_1 + v'_2) - v \otimes v'_1 - v \otimes v'_2$. Define the tensor product $V \otimes_R V'$ as a quotient group W/W_1 .

EXERCISE: Show that $r \cdot v \otimes v' \mapsto (rv) \otimes v'$ defines an *R*-module structure on $V \otimes_R V'$.

REMARK: Let \mathcal{F} be a sheaf of rings, and \mathcal{B}_1 and \mathcal{B}_2 be sheaves of locally free (M, \mathcal{F}) -modules. Then

 $U \longrightarrow \mathcal{B}_1(U) \otimes_{\mathcal{F}(U)} \mathcal{B}_2(U)$

is also a locally free sheaf of modules.

DEFINITION: Tensor product of vector bundles is a tensor product of the corresponding sheaves of modules.

EXERCISE: Let *B* and *B'* ve vector bundles on *M*, $B|_x$, $B'|_x$ their fibers, and $B \otimes_{C^{\infty}M} B'$ their tensor product. **Prove that** $B \otimes_{C^{\infty}M} B'|_x = B|_x \otimes_{\mathbb{R}} B'|_x$.

Pullback (reminder)

CLAIM: Let $M_1 \xrightarrow{\varphi} M$ be a smooth map of manifolds, and $B \xrightarrow{\pi} M$ a total space of a vector bundle. Then $B \times_M M_1$ is a total space of a vector bundle on M_1 .

Proof. Step 1: $B \times_M M_1$ is obviously a relative vector space. Indeed, the fibers of projection $\pi_1 : B \times_M M_1 \longrightarrow M_1$ are vector spaces, $\pi_1^{-1}(m_1) = \pi^{-1}(\varphi(m_1))$. It remains only to show that it is locally trivial.

Step 2: Consider an open set $U \subset M$ that $B|_U = U \times \mathbb{R}^n$, and let $U_1 := \varphi^{-1}U$. Then $B \times_U U_1 = U_1 \times \mathbb{R}^n$. Since M_1 is covered by such U_1 , this implies that π_1 is a locally trivial fibration, and the additive structure smoothly depends on $m_1 \in M_1$.

DEFINITION: The bundle π_1 : $B \times_M M_1 \longrightarrow M_1$ is denoted φ^*B , and called **inverse image**, or **a pullback** of *B*.

Algebras represented by generators and relations

DEFINITION: Let V be a vector space. Free or tensor algebra generated by V is an algebra $T(V) := \bigoplus_i V^{\otimes i}$ with multiplivation given by $x \cdot y = x \otimes y$. The zero component $V^{\otimes 0}$ is identified with the ground field. Thus, T(V) is an algebra with unit.

DEFINITION: Let V be a vector space over the ground field k, called "the space of generators", and $W \subset T(V)$ another space called "the space of relations". Consider the quotient space $A := \frac{T(V)}{T(V)WT(V)}$, where T(V)WT(V) is a subspace of T(V) generated by vectors vwv', where $w \in W$, $v, v' \in T(V)$. Then A is is equipped with a natural structure of an algebra with unit, in such a way that the quotient map $T(V) \rightarrow A$ is an isomorphism. The algebra A is called algebra generated by generators and relations.

EXAMPLE: Let V be a vector space with a bilinear symmetric form g: $V \otimes V \longrightarrow \mathbb{R}$. Consider the algebra Cl(V) generated by V, with relations

$$v_1 \cdot v_2 + v_2 \cdot v_1 = g(v_1, v_2) \cdot 1,$$

for all $v_1, v_2 \in V$. This algebra is called **Clifford algebra** over k.

Graded algebras

DEFINITION: An algebra A is called **graded** if A is represented as $A = \bigoplus A^i$, where $i \in \mathbb{Z}$, and the product satisfies $A^i \cdot A^j \subset A^{i+j}$. Instead $\bigoplus A^i$ one often writes A^* , where * denotes all indices together. Some of the spaces A^i can be zero, but the ground field is always assumed to belong in A^0 .

EXAMPLE: The tensor algebra T(V) and the polynomial algebra $Sym^*(V)$ are obviously graded.

DEFINITION: A subspace $W \subset A^*$ of a graded algebra is called **graded** if W is a direct sum of components $W^i \subset A^i$.

EXERCISE: Let $W \subset T(V)$ be a graded subspace. Then the algebra generated by V with relation space W is also graded.

M. Verbitsky

The Grassmann algebra

DEFINITION: Let *V* be a vector space, and $W \subset V \otimes V$ a graded subspace, generated by vectors $x \otimes y + y \otimes x$ and $x \otimes x$, for all $x, y \in V$. A graded algebra defined by the generator space *V* and the relation space *W* is called **Grassmann algebra**, or **exterior algebra**, and denoted $\Lambda^*(V)$. The space $\Lambda^i(V)$ is called *i*-th exterior power of *V*, and the multiplication in $\Lambda^*(V)$ – **exterior multiplication**. Exterior multiplication is denoted \wedge .

REMARK: Grassmann algebra is a a Clifford algebra with the symmetric form g = 0.

EXERCISE: Prove that $\Lambda^1 V$ is isomorphic to V.

DEFINITION: An element of Grassmann algebra is called **even** if it lies in $\bigoplus_{i \in \mathbb{Z}} \Lambda^{2i}(V)$ and **odd** if it lies in $\bigoplus_{i \in \mathbb{Z}} \Lambda^{2i+1}(V)$. For an even or odd $x \in \Lambda^*(V)$, we define a number \tilde{x} called **parity** of x. The parity of x is 0 for even x and 1 for odd.

CLAIM: In Grassmann algebra, $x \wedge y = (-1)^{\tilde{x}\tilde{y}}y \wedge x$.

Signature of a permutation

CLAIM: Let x_1, x_2, \ldots be a basis in $V \cong \Lambda^1 V$. Then the set of vectors $x_{i_1} \wedge x_{i_2} \wedge x_{i_3} \wedge \cdots$, for all $i_1 < i_2 < i_3 < \ldots$ is a basis in $\Lambda^*(V)$.

COROLLARY: Let V be a d-dimensional vector space. Then dim $\Lambda^d(V) = \binom{n}{d}$. In particular, dim $\Lambda^d V = 1$.

DEFINITION: The space $\Lambda^d V$ is called **the space of determinant vectors** on V.

CLAIM: Let V be a d-dimensional vector space, x_1, x_2, \ldots, x_d its basis, and det := $x_1 \wedge x_2 \wedge x_3 \cdots \wedge x_d$ the corresponding determinant vector in $\Lambda^d V$. For a given permutation $I = (i_1, i_2, \ldots, i_d)$ consider a vector $I(\det) := x_{i_1} \wedge x_{i_2} \wedge x_{i_3} \cdots \wedge x_{i_d}$. Then $I(\det) = \pm \det$. This correspondence gives a homomorphism σ from the group S_d of permutations to $\{\pm 1\}$.

REMARK: This homomorphism maps a product of odd number of transpositions to -1 and a product of even number of transpositions to 1.

DEFINITION: The number $\sigma(I)$ is called **signature** of a permitation *I*. Permutation *I* is called **odd** if $\sigma(I) = -1$ and **even** if $\sigma(I) = 1$.

Antisymmetrization

DEFINITION: Let V be a vector space, $T^{\otimes i}V$ the *i*-th tensor power of V, and Alt : $T^{\otimes i}V \longrightarrow \Lambda^i V$ be **the antisymmetrization**,

$$\mathsf{Alt}(\eta)(x_1,...,x_i) := \frac{1}{i!} \sum_{\sigma \in \Sigma_i} (-1)^{\tilde{\sigma}} \eta(x_{\sigma_1},...,x_{\sigma_i})$$

where Σ_i is the group of permutations, and $\tilde{\sigma} = 1$ for odd permutations, and 0 for even. We say that a vector $\eta \in V^{\otimes d}$ is **totally antisymmetric** if $\eta = \operatorname{Alt}(\eta)$.

EXERCISE: Let $\eta \in V^{\otimes d}$ be a vector which satisfies $\eta = \frac{1}{d!}(-1)^{\tilde{\sigma}} \sum_{I \in S_d} I(\eta)$. **Prove that** $I(\eta) = (-1)^{\tilde{\sigma}} \eta$ for any permutation $\sigma \in S_d$.

REMARK: This implies that $Alt(Alt(\eta)) = Alt(\eta)$ for any $\eta \in V^{\otimes d}$.

CLAIM: Let $W \subset V \otimes V$ be the space of relations of Grassmann algebra defined above. Then $Alt(T(V) \cdot W \cdot T(V)) = 0$.

COROLLARY: This defines a natural linear map Ψ from $\Lambda^*(V)$ to the space im Alt of totally antisymmetric tensors.

Antisymmetric tensors and Grassmann algebra

CLAIM: The map Ψ gives an isomorphism of $\Lambda^*(V)$ and im Alt.

Proof. Step 1: Since im Alt is generated by antisymmetrizations of monomials $x_{i_1} \otimes x_{i_2} \otimes \ldots \otimes x_{i_d}$, and all these monomials belong to im Ψ , Ψ is surjective.

Step 2: These antisymmetrizations are linearly independent in the tensor algebra T(V), because they all contain different tensor monomials. This implies that the basis in $\Lambda^*(V)$ is mapped into linearly independent elements of im Alt, and Ψ is injective.

REMARK: From now on, we identify $\Lambda^*(V)$ and the space of totally antisymmetric tensors.

REMARK: This identification **defines multiplicative structure on the space** im Alt **of totally antisymmetric tensors.**

CLAIM: The multiplicative structure on im Alt can be written as follows. Given totally antisymmetric tensors $\alpha, \beta \in \text{im Alt}$, to find $\alpha \wedge \beta \in \text{im Alt} = \Lambda^*(V)$, we muptiply α and β in T(V) and apply Alt.

Proof: It suffices to check this on monomials.

Determinant

REMARK: Let W be a one-dimensional vector space over k. Then End W is naturally isomorphic to k.

REMARK: Let $A \in End(V)$ be a linear endomorphism of a vector space V. Then the action of A on $V \cong \Lambda^1 V$ is uniquely extended to a multiplicative homomorphism of the algebra $\Lambda^* V$.

DEFINITION: Let V be a d-dimensional vector space and $A \in End(V)$. Consider the induced endomorphism of the space of determinant vectors $\Lambda^d(V)$ denoted as det $A \in End(\Lambda^d(V))$. Since $\Lambda^d(V)$ is 1-dimensional, the space $End(\Lambda^d(V))$ is naturally identified with k. This allows to consider det A as a number, that is, an element of k. This number is called **determinant** of A.

REMARK: From the definition it is clear that det **defines a homomorphism** from the group GL(V) if invertible matrices to the multiplicative group k^* of the ground field.

Determinant bundle

DEFINITION: A line bundle is a 1-dimensional vector bundle.

EXERCISE: Let M be a simply connected manifold. **Prove that any real line bundle on** M **is trivial.**

DEFINITION: Let *B* be a vector bundle of rank *n*, and $\Lambda^n B$ its top exterior product. This bundle is called **determinant bundle** of *B*.

REMARK: It is a line bundle.

REMARK: Let *M* be an *n*-manifold, and $\Lambda^n TM$ a determinant bundle of its tangent bundle. Prove that $\Lambda^n TM$ is trivial if and only if *M* is orientable.

DEFINITION: A real vector bundle is called **orientable** if its determinant bundle is trivial.

DEFINITION: A manifold is called **orientable** if its tangent bundle is orientable.

Cotangent bundle

DEFINITION: Let M be a smooth manifold, TM the tangent bundle, and $\Lambda^1 M = T^*M$ its dual bundle. It is called **cotangent bundle** of M. Sections of T^*M are called **1-forms** or **covectors** on M. For any $f \in C^{\infty}M$, consider a functional $TM \longrightarrow C^{\infty}M$ obtained by mapping $X \in TM$ to a derivation of $f: X \longrightarrow D_X(f)$. Since this map is linear in X, it defines a section $df \in T^*M$ called **the differential** of f.

CLAIM: $\Lambda^1 M$ is generated as a $C^{\infty} M$ -module by $d(C^{\infty} M)$.

Proof: Locally in coordinates $x_1, ..., x_n$ this is clear, because the covectors $dx_1, ..., dx_n$ dive a basis in T^*M dual to the basis $\frac{d}{dx_1}, ..., \frac{d}{dx_n}$ in TM.

DEFINITION: Let M be a smooth manifold. A bundle of differential *i*-forms on M is the bundle $\Lambda^i T^*M$ of antisymmetric *i*-forms on TM. It is denoted $\Lambda^i M$.

REMARK: $\Lambda^0 M = C^{\infty} M$.

De Rham algebra

DEFINITION: Let $\alpha \in (V^*)^{\otimes i}$ and $\alpha \in (V^*)^{\otimes j}$ be polylinear forms on V. Define the **tensor multiplication** $\alpha \otimes \beta$ as

 $\alpha \otimes \beta(x_1, ..., x_{i+j}) := \alpha(x_1, ..., x_j) \beta(x_{i+1}, ..., x_{i+j}).$

DEFINITION: Let $\bigotimes_k T^*M \xrightarrow{\Pi} \Lambda^k M$ be the antisymmetrization map,

$$\Pi(\alpha)(x_1,...,x_n) := \frac{1}{n!} \sum_{\sigma \in \operatorname{Sym}_n} (-1)^{\sigma} \alpha(x_{\sigma_1},x_{\sigma_2},...,x_{\sigma_n}).$$

Define the exterior multiplication $\wedge : \Lambda^i M \times \Lambda^j M \longrightarrow \Lambda^{i+j} M$ as $\alpha \wedge \beta := \Pi(\alpha \otimes \beta)$, where $\alpha \otimes \beta$ is a section $\Lambda^i M \otimes \Lambda^j M \subset \bigotimes_{i+j} T^* M$ obtained as their tensor multiplication.

REMARK: The fiber of the bundle Λ^*M at $x \in M$ is identified with the Grassmann algebra $\Lambda^*T_x^*M$. This identification is compatible with the Grassmann product.

DEFINITION: Let $t_1, ..., t_n$ be coordinate functions on \mathbb{R}^n , and $\alpha \in \Lambda^* \mathbb{R}^n$ a monomial obtained as a product of several dt_i : $\alpha = dt_{i_1} \wedge dt_{i_2} \wedge ... \wedge dt_{i_k}$ $i_1 < i_2 < ... < i_k$. Then α is called a coordinate monomial.