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Sheaves of modules (reminder)

REMARK: Let A: o — B be a ring homomorphism, and V a B-module.
Then V is equipped with a natural A-module structure: av := p(a)wv.

DEFINITION: Let F be a sheaf of rings on a topological space M, and
B another sheaf. It is called a sheaf of F-modules if for all U C M the
space of sections B(U) is equipped with a structure of F(U)-module, and

%
for all U’ C U, the restriction map B(U) vy B(U") is a homomorphism of
F(U)-modules (use the remark above to obtain a structure of F(U)-module
on B(U")).

DEFINITION: A free sheaf of modules F" over a ring sheaf F maps an
open set U to the space F(U)™.

DEFINITION: Locally free sheaf of modules over a sheaf of rings F is a
sheaf of modules B satisfying the following condition. For each x € M there
exists a neighbourhood U > z such that the restriction Bl is free.

DEFINITION: A vector bundle on a smooth manifold M is a locally free

sheaf of C*°M-modules.
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Tensor product (reminder)

DEFINITION: Let V,V/ be R-modules, W a free abelian group generated by
v®7, with v e V,2»' € V!, and W7 C W a subgroup generated by combinations

ro@v —v@rv, (v +v2) @V —v1 RV —v®v and VR (V] +v5) —vV® V] —V V5.
Define the tensor product V ®r V'’ as a quotient group W/Wj.

EXERCISE: Show that r-v®v' — (rv) ® v’ defines an R-module structure
on VvV ®pg V7.

REMARK: Let F be a sheaf of rings, and By and B, be sheaves of locally
free (M, F)-modules. Then

U— B1(U) @z B2(U)

IS also a locally free sheaf of modules.

DEFINITION: Tensor product of vector bundles is a tensor product of the
corresponding sheaves of modules.

EXERCISE: Let B and B’ ve vector bundles on M, Bl;, B’|z their fibers,
and B®goops B’ their tensor product. Prove that B®cw,s Bl = Blz Qr B -
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The Grassmann algebra (reminder)

DEFINITION: Let V be a vector space, and W C V® V a graded subspace,
generated by vectors xr @y +y® x and z ® xz, for all z,y € V. A graded
algebra defined by the generator space V and the relation space W is called
Grassmann algebra, or exterior algebra, and denoted A*(V). The space
AY (V) is called i-th exterior power of V, and the multiplication in A*(V) —
exterior multiplication. Exterior multiplication is denoted A.

EXERCISE: Prove that AlV is iIsomorphic to V.

DEFINITION: An element of Grassmann algebra is called even if it lies in
D,z N2H(V) and odd if it lies in @,cz A2 T1(V). For an even or odd x € A*(V),
we define a number z called parity of x. The parity of z is O for even x and
1 for odd.

CLAIM: In Grassmann algebra, z Ay = (—1)%y A z.
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Antisymmetrization (reminder)

DEFINITION: Let V be a vector space, T®'V the i-th tensor power of V,
and Alt: T®V — A'V be the antisymmetrization,

1 ~
Alt(n) (@1, zi) == > (=1)7n(2oy, ..., To;)
7! oES;

where 2_; is the group of permutations, and ¢ = 1 for odd permutations,
and O for even. We say that a vector n € V®d s totally antisymmetric if

n = Alt(n).

EXERCISE: Let n € V®? be a vector which satisfies n = 5(—1)% Y ¢g, 1(n).
Prove that I(n) = (—1)%n for any permutation o € S,.

REMARK: This implies that Alt(Alt(n)) = Alt(n) for any n € V®q,

CLAIM: Let W C V ® V be the space of relations of Grassmann algebra
defined above. Then AIt(T (V) -W -T(V)) = 0.

COROLLARY: This defines a natural linear map Vv from A*(V) to the
space im Alt of totally antisymmetric tensors.
5
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Antisymmetric tensors and Grassmann algebra (reminder)
CLAIM: The map WV gives an isomorphism of A*(V) and im Alt.

REMARK: From now on, we identify A*(V) and the space of totally
antisymmetric tensors.

REMARK: This identification defines multiplicative structure on the
space im Alt of totally antisymmetric tensors.

CLAIM: The multiplicative structure on im Alt can be written as follows.
Given totally antisymmetric tensors o,8 € imAIt, to find a A3 € ImAIt =
A*(V), we muptiply « and 3 in T(V) and apply Alt.

Proof: It suffices to check this on monomials. =
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Cotangent bundle

DEFINITION: Let M be a smooth manifold, T M the tangent bundle, and
ALM = T*M its dual bundle. It is called cotangent bundle of M. Sections
of T*M are called 1-forms or covectors on M. For any f € C°°M, consider
a functional TM — C°°M obtained by mapping X € T'M to a derivation of
f: X — Dx(f). Since this map is linear in X, it defines a section df € T*M
called the differential of f.

CLAIM: AlM is generated as a C>°M-module by d(C®°M).

Proof: Locally in coordinates xzq,...,xn this is clear, because the covectors
dxq, ..., dzy dive a basis in T*M dual to the basis %1,...,% in TM. m
DEFINITION: Let M be a smooth manifold. A bundle of differential
i-forms on M is the bundle A'T*M of antisymmetric i-forms on TM. It is
denoted A'M.

REMARK: NOM = C>®M.
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De Rham algebra

DEFINITION: Let o € (V¥)® and a € (V*)® be polylinear forms on V.
Define the tensor multiplication a ® g as

a B(xla ceey xz—l—]) L= Oé(a?]_, sy ZCJ)B(CEZ_|_]_, ceey mz—l—])

DEFINITION: Let ®.T*M -5 A*M be the antisymmetrization map,

1

N(a)(x1,...,2n) = Z (—1)%a(xoqy; Togy s Tap)-

n: oceSym,,
Define the exterior multiplication A : A'M x ANNM — NTIM as a A B =

N(a® B), where a® B is a section A'M ® NVM C ®;4,;T*M obtained as their
tensor multiplication.

REMARK: The fiber of the bundle A*M at z € M is identified with the
Grassmann algebra A*T 7M. This identification is compatible with the Grass-
mann product.

DEFINITION: Let ¢q,...,t, be coordinate functions on R", and a € A*R"
a monomial obtained as a product of several dt;: « = dt;; Ndt, N\ ... N\di;,
11 <12 < ...< 1. T'hen « is called a coordinate monomial.
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De Rham differential

DEFINITION: De Rham differential d : A*M — A*T1M is an R-linear
map satisfying the following conditions.
* For each f € AOM = C>®M, d(f) € A1M is equal to the differential

df € /\1M. - * (Leibnitz rule) d(a Ab) = da Ab+ (=1))a A db for any
a € NNM,be NM.
* d?=0.

REMARK: A map on a graded algebra which satisfies the Leibnitz rule above
iIs called an odd derivation.

REMARK: The following two lemmas are needed to prove uniqueness of de
Rham differential.

LEMMA: Let A = @Ai be a graded algebra, B C A a set of multiplicative
generators, and D1,D> : A— A two odd derivations which are equal on B.
Then Dy =Dy. =

LEMMA: AN*M is generated by C*°M and d(C*°M).

Proof: By definition, A*M is generated by AOM = C°M and ALl However,
d(C>®M) generate A1), as shown above. =
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De Rham differential: uniqueness and existence

THEOREM:
De Rham differential is uniquely determined by these axioms.

Proof: De Rham differential is an odd derivation. Its value on C°°M is defined
by the first axiom. On d(C>®°M) de Rham differential valishes, because d2 = 0.
u

DEFINITION: Let tq,...,t, be coordinate functions on R", «; coordinate
monomials, and a 1=} f;a;. Define d(a) :=33;3; %dtj N ;.
J

EXERCISE:
Check that d satisfies the properties of de Rham differential.

COROLLARY: De Rham differential exists on any smooth manifold.

Proof: Locally, de Rham differential d exists, as follows from the construction
above. Since d is unique, it is compatible with restrictions. This means that
d defines a sheaf morphism. Restricting this sheaf morphism to global
sections, we obtain de Rham differential on A*M. =
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Superalgebras

DEFINITION: Let A* = @,czA" be a graded algebra over a field. It is
called graded commutative, or supercommutative, if ab = (—1)%Yba for all
a€ A be A,

EXAMPLE: Grassmann algebra A*V is clearly supercommutative.

DEFINITION: Let A* be a graded commutative algebra, and D : A* — A*T?
be a map which shifts grading by 2. It is called a graded derivation if
D(ab) = D(a)b+ (—1)YaD(b), for each a € AJ.

REMARK: If 7 is even, graded derivation is a usual derivation. If it is even,
it an odd derivation.

DEFINITION: Let M be a smooth manifold, and X € T'M a vector field.
Consider an operation of convolution with a vector field iy : A/M — A1 M,
mapping an i-form « to an (i — 1)-form vq,...,v,_1 — a(X,v1,...,v;_1)

EXERCISE: Prove that i:x is an odd derivation.
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Supercommutator

DEFINITION: Let A* be a graded vector space, and E : A* —s A*t?
F . A* —s A*tJ operators shifting the grading by 1,7. Define the super-
commutator {E,F} := EF — (—1)YFE.

DEFINITION: An endomorphism which shifts a grading by ¢ is called even
if 2 is even, and odd otherwise.

EXERCISE: Prove that a supercommutator satisfies graded Jacobi iden-
tity,

(E{F,G}} = ({E,F},G} + (-1)!F{F {E,G}}

where £ and £ are 0 if E, F are even, and 1 otherwise.

REMARK: There is a simple mnemonic rule which allows one to remember
a superidentity, if you know the commutative analogue. Each time when in
commutative case two letters £, F are exchanged, In supercommuta-
tive case one needs to multiply by (—1)&%,

EXERCISE: Prove that a supercommutator of superderivations is again
a superderivation.
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Pullback of a differential form

DEFINITION: Let M -2 N be a morphism of smooth manifolds, and
a € A'N be a differential form. Consider an -form ¢*a taking value

0] p(my (Dp(x1), .. Do (7))
©

on x1,....,x; € IT;mM. It is called the pullback of a. If M — N is a closed
embedding, the form ¢*« is called the restriction of o« to M — N.

LEMMA: (*) Let W1,Ws: A*N — A*M be two maps which satisfy graded
Leibnitz identity, supercommutes with de Rham differential, and satisfy Wq|gcops =
\U2|CooM. Then Vi = Ws,,

Proof: The algebra A*M is generated multiplicatively by C*°M and d(C*°M);
restrictions of W, to these two spaces are equal. =

CLAIM: Pullback commutes with the de Rham differential.

Proof: Let di,d> : A*N — A*T1M be the maps di = ¢*od and dy = d o ©*.
These maps satisfy the Leibnitz identity, and they are equal on C°°M.
The super-commutator § := {d;,d} is equal to do ¢* od, it commutes with d,
and equal 0 on functions. By Lemma (*), § = 0. Then d; supercommutes
with d. Applying Lemma (*) again, we obtain that d{ = d>. =

13



