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Sheaves of modules (reminder)

REMARK: Let A : ϕ−→B be a ring homomorphism, and V a B-module.

Then V is equipped with a natural A-module structure: av := ϕ(a)v.

DEFINITION: Let F be a sheaf of rings on a topological space M , and

B another sheaf. It is called a sheaf of F-modules if for all U ⊂ M the

space of sections B(U) is equipped with a structure of F(U)-module, and

for all U ′ ⊂ U , the restriction map B(U)
ϕU,U ′−→ B(U ′) is a homomorphism of

F(U)-modules (use the remark above to obtain a structure of F(U)-module

on B(U ′)).

DEFINITION: A free sheaf of modules Fn over a ring sheaf F maps an

open set U to the space F(U)n.

DEFINITION: Locally free sheaf of modules over a sheaf of rings F is a

sheaf of modules B satisfying the following condition. For each x ∈ M there

exists a neighbourhood U 3 x such that the restriction B|U is free.

DEFINITION: A vector bundle on a smooth manifold M is a locally free

sheaf of C∞M-modules.
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Tensor product (reminder)

DEFINITION: Let V, V ′ be R-modules, W a free abelian group generated by

v⊗ v′, with v ∈ V, v′ ∈ V ′, and W1 ⊂W a subgroup generated by combinations

rv⊗v′−v⊗ rv′, (v1 +v2)⊗v′−v1⊗v′−v2⊗v′ and v⊗ (v′1 +v′2)−v⊗v′1−v⊗v
′
2.

Define the tensor product V ⊗R V ′ as a quotient group W/W1.

EXERCISE: Show that r · v⊗ v′ 7→ (rv)⊗ v′ defines an R-module structure

on V ⊗R V ′.

REMARK: Let F be a sheaf of rings, and B1 and B2 be sheaves of locally

free (M,F)-modules. Then

U −→B1(U)⊗F(U) B2(U)

is also a locally free sheaf of modules.

DEFINITION: Tensor product of vector bundles is a tensor product of the

corresponding sheaves of modules.

EXERCISE: Let B and B′ ve vector bundles on M , B|x, B′|x their fibers,

and B⊗C∞M B′ their tensor product. Prove that B⊗C∞M B′|x = B|x⊗RB
′|x.
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The Grassmann algebra (reminder)

DEFINITION: Let V be a vector space, and W ⊂ V ⊗ V a graded subspace,

generated by vectors x ⊗ y + y ⊗ x and x ⊗ x, for all x, y ∈ V . A graded

algebra defined by the generator space V and the relation space W is called

Grassmann algebra, or exterior algebra, and denoted Λ∗(V ). The space

Λi(V ) is called i-th exterior power of V , and the multiplication in Λ∗(V ) –

exterior multiplication. Exterior multiplication is denoted ∧.

EXERCISE: Prove that Λ1V is isomorphic to V .

DEFINITION: An element of Grassmann algebra is called even if it lies in⊕
i∈Z Λ2i(V ) and odd if it lies in

⊕
i∈Z Λ2i+1(V ). For an even or odd x ∈ Λ∗(V ),

we define a number x̃ called parity of x. The parity of x is 0 for even x and

1 for odd.

CLAIM: In Grassmann algebra, x ∧ y = (−1)x̃ỹy ∧ x.
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Antisymmetrization (reminder)

DEFINITION: Let V be a vector space, T⊗iV the i-th tensor power of V ,

and Alt : T⊗iV −→ ΛiV be the antisymmetrization,

Alt(η)(x1, ..., xi) :=
1

i!

∑
σ∈Σi

(−1)σ̃η(xσ1, ..., xσi)

where Σi is the group of permutations, and σ̃ = 1 for odd permutations,

and 0 for even. We say that a vector η ∈ V ⊗d is totally antisymmetric if

η = Alt(η).

EXERCISE: Let η ∈ V ⊗d be a vector which satisfies η = 1
d!(−1)σ̃

∑
I∈Sd I(η).

Prove that I(η) = (−1)σ̃η for any permutation σ ∈ Sd.

REMARK: This implies that Alt(Alt(η)) = Alt(η) for any η ∈ V ⊗d.

CLAIM: Let W ⊂ V ⊗ V be the space of relations of Grassmann algebra

defined above. Then Alt(T (V ) ·W · T (V )) = 0.

COROLLARY: This defines a natural linear map Ψ from Λ∗(V ) to the

space im Alt of totally antisymmetric tensors.
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Antisymmetric tensors and Grassmann algebra (reminder)

CLAIM: The map Ψ gives an isomorphism of Λ∗(V ) and im Alt.

REMARK: From now on, we identify Λ∗(V ) and the space of totally

antisymmetric tensors.

REMARK: This identification defines multiplicative structure on the

space im Alt of totally antisymmetric tensors.

CLAIM: The multiplicative structure on im Alt can be written as follows.

Given totally antisymmetric tensors α, β ∈ im Alt, to find α ∧ β ∈ im Alt =

Λ∗(V ), we muptiply α and β in T (V ) and apply Alt.

Proof: It suffices to check this on monomials.

6



Geometry of manifolds, lecture 9 M. Verbitsky

Cotangent bundle

DEFINITION: Let M be a smooth manifold, TM the tangent bundle, and

Λ1M = T ∗M its dual bundle. It is called cotangent bundle of M . Sections

of T ∗M are called 1-forms or covectors on M . For any f ∈ C∞M , consider

a functional TM −→ C∞M obtained by mapping X ∈ TM to a derivation of

f : X −→DX(f). Since this map is linear in X, it defines a section df ∈ T ∗M
called the differential of f .

CLAIM: Λ1M is generated as a C∞M-module by d(C∞M).

Proof: Locally in coordinates x1, ..., xn this is clear, because the covectors

dx1, ..., dxn dive a basis in T ∗M dual to the basis d
dx1

, ..., d
dxn

in TM .

DEFINITION: Let M be a smooth manifold. A bundle of differential

i-forms on M is the bundle ΛiT ∗M of antisymmetric i-forms on TM . It is

denoted ΛiM .

REMARK: Λ0M = C∞M .
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De Rham algebra

DEFINITION: Let α ∈ (V ∗)⊗i and α ∈ (V ∗)⊗j be polylinear forms on V .

Define the tensor multiplication α⊗ β as

α⊗ β(x1, ..., xi+j) := α(x1, ..., xj)β(xi+1, ..., xi+j).

DEFINITION: Let
⊗
k T
∗M Π−→ ΛkM be the antisymmetrization map,

Π(α)(x1, ..., xn) :=
1

n!

∑
σ∈Symn

(−1)σα(xσ1, xσ2, ..., xσn).

Define the exterior multiplication ∧ : ΛiM × ΛjM −→ Λi+jM as α ∧ β :=

Π(α⊗ β), where α⊗ β is a section ΛiM ⊗ ΛjM ⊂
⊗
i+j T

∗M obtained as their

tensor multiplication.

REMARK: The fiber of the bundle Λ∗M at x ∈ M is identified with the

Grassmann algebra Λ∗T ∗xM. This identification is compatible with the Grass-

mann product.

DEFINITION: Let t1, ..., tn be coordinate functions on Rn, and α ∈ Λ∗Rn

a monomial obtained as a product of several dti: α = dti1 ∧ dti2 ∧ ... ∧ dtik
i1 < i2 < ... < ik. Then α is called a coordinate monomial.
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De Rham differential

DEFINITION: De Rham differential d : Λ∗M −→ Λ∗+1M is an R-linear
map satisfying the following conditions.

* For each f ∈ Λ0M = C∞M , d(f) ∈ Λ1M is equal to the differential
df ∈ Λ1M . * (Leibnitz rule) d(a ∧ b) = da ∧ b + (−1)ja ∧ db for any
a ∈ ΛiM, b ∈ ΛjM .

* d2 = 0.

REMARK: A map on a graded algebra which satisfies the Leibnitz rule above
is called an odd derivation.

REMARK: The following two lemmas are needed to prove uniqueness of de
Rham differential.

LEMMA: Let A =
⊕
Ai be a graded algebra, B ⊂ A a set of multiplicative

generators, and D1, D2 : A−→A two odd derivations which are equal on B.
Then D1 = D2.

LEMMA: Λ∗M is generated by C∞M and d(C∞M).

Proof: By definition, Λ∗M is generated by Λ0M = C∞M and Λ1M . However,
d(C∞M) generate Λ1M , as shown above.
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De Rham differential: uniqueness and existence

THEOREM:

De Rham differential is uniquely determined by these axioms.

Proof: De Rham differential is an odd derivation. Its value on C∞M is defined

by the first axiom. On d(C∞M) de Rham differential valishes, because d2 = 0.

DEFINITION: Let t1, ..., tn be coordinate functions on Rn, αi coordinate

monomials, and α :=
∑
fiαi. Define d(α) :=

∑
i
∑
j
dfi
dtj
dtj ∧ αi.

EXERCISE:

Check that d satisfies the properties of de Rham differential.

COROLLARY: De Rham differential exists on any smooth manifold.

Proof: Locally, de Rham differential d exists, as follows from the construction

above. Since d is unique, it is compatible with restrictions. This means that

d defines a sheaf morphism. Restricting this sheaf morphism to global

sections, we obtain de Rham differential on Λ∗M .

10



Geometry of manifolds, lecture 9 M. Verbitsky

Superalgebras

DEFINITION: Let A∗ = ⊕i∈ZAi be a graded algebra over a field. It is

called graded commutative, or supercommutative, if ab = (−1)ijba for all

a ∈ Ai, b ∈ Aj.

EXAMPLE: Grassmann algebra Λ∗V is clearly supercommutative.

DEFINITION: Let A∗ be a graded commutative algebra, and D : A∗ −→A∗+i

be a map which shifts grading by i. It is called a graded derivation if

D(ab) = D(a)b+ (−1)ijaD(b), for each a ∈ Aj.

REMARK: If i is even, graded derivation is a usual derivation. If it is even,

it an odd derivation.

DEFINITION: Let M be a smooth manifold, and X ∈ TM a vector field.

Consider an operation of convolution with a vector field iX : ΛiM −→ Λi−1M ,

mapping an i-form α to an (i− 1)-form v1, ..., vi−1 −→ α(X, v1, ..., vi−1)

EXERCISE: Prove that iX is an odd derivation.
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Supercommutator

DEFINITION: Let A∗ be a graded vector space, and E : A∗ −→A∗+i,
F : A∗ −→A∗+j operators shifting the grading by i, j. Define the super-

commutator {E,F} := EF − (−1)ijFE.

DEFINITION: An endomorphism which shifts a grading by i is called even

if i is even, and odd otherwise.

EXERCISE: Prove that a supercommutator satisfies graded Jacobi iden-

tity,

{E, {F,G}} = {{E,F}, G}+ (−1)ẼF̃{F, {E,G}}

where Ẽ and F̃ are 0 if E,F are even, and 1 otherwise.

REMARK: There is a simple mnemonic rule which allows one to remember
a superidentity, if you know the commutative analogue. Each time when in

commutative case two letters E, F are exchanged, in supercommuta-

tive case one needs to multiply by (−1)ẼF̃ .

EXERCISE: Prove that a supercommutator of superderivations is again

a superderivation.
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Pullback of a differential form

DEFINITION: Let M
ϕ−→ N be a morphism of smooth manifolds, and

α ∈ ΛiN be a differential form. Consider an i-form ϕ∗α taking value

α
∣∣∣ϕ(m)(Dϕ(x1), ...Dϕ(xi))

on x1, ..., xi ∈ TmM . It is called the pullback of α. If M
ϕ−→ N is a closed

embedding, the form ϕ∗α is called the restriction of α to M ↪→ N .

LEMMA: (*) Let Ψ1,Ψ2 : Λ∗N −→ Λ∗M be two maps which satisfy graded
Leibnitz identity, supercommutes with de Rham differential, and satisfy Ψ1|C∞M =
Ψ2|C∞M . Then Ψ1 = Ψ2.

Proof: The algebra Λ∗M is generated multiplicatively by C∞M and d(C∞M);
restrictions of Ψi to these two spaces are equal.

CLAIM: Pullback commutes with the de Rham differential.

Proof: Let d1, d2 : Λ∗N −→ Λ∗+1M be the maps d1 = ϕ∗ ◦ d and d2 = d ◦ ϕ∗.
These maps satisfy the Leibnitz identity, and they are equal on C∞M.
The super-commutator δ := {di, d} is equal to d ◦ ϕ∗ ◦ d, it commutes with d,
and equal 0 on functions. By Lemma (*), δ = 0. Then di supercommutes
with d. Applying Lemma (*) again, we obtain that d1 = d2.
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