Geometry of manifolds

lecture 9

Misha Verbitsky

Université Libre de Bruxelles

December 7, 2015

Sheaves of modules (reminder)

REMARK: Let $A : \varphi \longrightarrow B$ be a ring homomorphism, and V a B-module. Then V is equipped with a natural A-module structure: $av := \varphi(a)v$.

DEFINITION: Let \mathcal{F} be a sheaf of rings on a topological space M, and \mathcal{B} another sheaf. It is called a sheaf of \mathcal{F} -modules if for all $U \subset M$ the space of sections $\mathcal{B}(U)$ is equipped with a structure of $\mathcal{F}(U)$ -module, and for all $U' \subset U$, the restriction map $\mathcal{B}(U) \xrightarrow{\varphi_{U,U'}} \mathcal{B}(U')$ is a homomorphism of $\mathcal{F}(U)$ -modules (use the remark above to obtain a structure of $\mathcal{F}(U)$ -module on $\mathcal{B}(U')$).

DEFINITION: A free sheaf of modules \mathcal{F}^n over a ring sheaf \mathcal{F} maps an open set U to the space $\mathcal{F}(U)^n$.

DEFINITION: Locally free sheaf of modules over a sheaf of rings \mathcal{F} is a sheaf of modules \mathcal{B} satisfying the following condition. For each $x \in M$ there exists a neighbourhood $U \ni x$ such that the restriction $\mathcal{B}|_U$ is free.

DEFINITION: A vector bundle on a smooth manifold M is a locally free sheaf of $C^{\infty}M$ -modules.

Tensor product (reminder)

DEFINITION: Let V, V' be R-modules, W a free abelian group generated by $v \otimes v'$, with $v \in V, v' \in V'$, and $W_1 \subset W$ a subgroup generated by combinations $rv \otimes v' - v \otimes rv'$, $(v_1 + v_2) \otimes v' - v_1 \otimes v' - v_2 \otimes v'$ and $v \otimes (v'_1 + v'_2) - v \otimes v'_1 - v \otimes v'_2$. Define the tensor product $V \otimes_R V'$ as a quotient group W/W_1 .

EXERCISE: Show that $r \cdot v \otimes v' \mapsto (rv) \otimes v'$ defines an *R*-module structure on $V \otimes_R V'$.

REMARK: Let \mathcal{F} be a sheaf of rings, and \mathcal{B}_1 and \mathcal{B}_2 be sheaves of locally free (M, \mathcal{F}) -modules. Then

 $U \longrightarrow \mathcal{B}_1(U) \otimes_{\mathcal{F}(U)} \mathcal{B}_2(U)$

is also a locally free sheaf of modules.

DEFINITION: Tensor product of vector bundles is a tensor product of the corresponding sheaves of modules.

EXERCISE: Let *B* and *B'* ve vector bundles on *M*, $B|_x$, $B'|_x$ their fibers, and $B \otimes_{C^{\infty}M} B'$ their tensor product. **Prove that** $B \otimes_{C^{\infty}M} B'|_x = B|_x \otimes_{\mathbb{R}} B'|_x$.

The Grassmann algebra (reminder)

DEFINITION: Let *V* be a vector space, and $W \subset V \otimes V$ a graded subspace, generated by vectors $x \otimes y + y \otimes x$ and $x \otimes x$, for all $x, y \in V$. A graded algebra defined by the generator space *V* and the relation space *W* is called **Grassmann algebra**, or **exterior algebra**, and denoted $\Lambda^*(V)$. The space $\Lambda^i(V)$ is called *i*-th exterior power of *V*, and the multiplication in $\Lambda^*(V)$ – **exterior multiplication**. Exterior multiplication is denoted \wedge .

EXERCISE: Prove that $\Lambda^1 V$ is isomorphic to V.

DEFINITION: An element of Grassmann algebra is called **even** if it lies in $\bigoplus_{i \in \mathbb{Z}} \Lambda^{2i}(V)$ and **odd** if it lies in $\bigoplus_{i \in \mathbb{Z}} \Lambda^{2i+1}(V)$. For an even or odd $x \in \Lambda^*(V)$, we define a number \tilde{x} called **parity** of x. The parity of x is 0 for even x and 1 for odd.

CLAIM: In Grassmann algebra, $x \wedge y = (-1)^{\tilde{x}\tilde{y}}y \wedge x$.

Antisymmetrization (reminder)

DEFINITION: Let V be a vector space, $T^{\otimes i}V$ the *i*-th tensor power of V, and Alt : $T^{\otimes i}V \longrightarrow \Lambda^i V$ be **the antisymmetrization**,

$$\mathsf{Alt}(\eta)(x_1,...,x_i) := \frac{1}{i!} \sum_{\sigma \in \Sigma_i} (-1)^{\tilde{\sigma}} \eta(x_{\sigma_1},...,x_{\sigma_i})$$

where Σ_i is the group of permutations, and $\tilde{\sigma} = 1$ for odd permutations, and 0 for even. We say that a vector $\eta \in V^{\otimes d}$ is **totally antisymmetric** if $\eta = \operatorname{Alt}(\eta)$.

EXERCISE: Let $\eta \in V^{\otimes d}$ be a vector which satisfies $\eta = \frac{1}{d!}(-1)^{\tilde{\sigma}} \sum_{I \in S_d} I(\eta)$. **Prove that** $I(\eta) = (-1)^{\tilde{\sigma}} \eta$ for any permutation $\sigma \in S_d$.

REMARK: This implies that $Alt(Alt(\eta)) = Alt(\eta)$ for any $\eta \in V^{\otimes d}$.

CLAIM: Let $W \subset V \otimes V$ be the space of relations of Grassmann algebra defined above. Then $Alt(T(V) \cdot W \cdot T(V)) = 0$.

COROLLARY: This defines a natural linear map Ψ from $\Lambda^*(V)$ to the space im Alt of totally antisymmetric tensors.

Antisymmetric tensors and Grassmann algebra (reminder)

CLAIM: The map Ψ gives an isomorphism of $\Lambda^*(V)$ and im Alt.

REMARK: From now on, we identify $\Lambda^*(V)$ and the space of totally antisymmetric tensors.

REMARK: This identification defines multiplicative structure on the space im Alt of totally antisymmetric tensors.

CLAIM: The multiplicative structure on im Alt can be written as follows. Given totally antisymmetric tensors $\alpha, \beta \in \text{im Alt}$, **to find** $\alpha \wedge \beta \in \text{im Alt} = \Lambda^*(V)$, we muptiply α and β in T(V) and apply Alt.

Proof: It suffices to check this on monomials. ■

Cotangent bundle

DEFINITION: Let M be a smooth manifold, TM the tangent bundle, and $\Lambda^1 M = T^*M$ its dual bundle. It is called **cotangent bundle** of M. Sections of T^*M are called **1-forms** or **covectors** on M. For any $f \in C^{\infty}M$, consider a functional $TM \longrightarrow C^{\infty}M$ obtained by mapping $X \in TM$ to a derivation of $f: X \longrightarrow D_X(f)$. Since this map is linear in X, it defines a section $df \in T^*M$ called **the differential** of f.

CLAIM: $\Lambda^1 M$ is generated as a $C^{\infty} M$ -module by $d(C^{\infty} M)$.

Proof: Locally in coordinates $x_1, ..., x_n$ this is clear, because the covectors $dx_1, ..., dx_n$ dive a basis in T^*M dual to the basis $\frac{d}{dx_1}, ..., \frac{d}{dx_n}$ in TM.

DEFINITION: Let M be a smooth manifold. A bundle of differential *i*-forms on M is the bundle $\Lambda^i T^*M$ of antisymmetric *i*-forms on TM. It is denoted $\Lambda^i M$.

REMARK: $\Lambda^0 M = C^{\infty} M$.

De Rham algebra

DEFINITION: Let $\alpha \in (V^*)^{\otimes i}$ and $\alpha \in (V^*)^{\otimes j}$ be polylinear forms on V. Define the **tensor multiplication** $\alpha \otimes \beta$ as

 $\alpha \otimes \beta(x_1, ..., x_{i+j}) := \alpha(x_1, ..., x_j) \beta(x_{i+1}, ..., x_{i+j}).$

DEFINITION: Let $\bigotimes_k T^*M \xrightarrow{\Pi} \Lambda^k M$ be the antisymmetrization map,

$$\Pi(\alpha)(x_1,...,x_n) := \frac{1}{n!} \sum_{\sigma \in \operatorname{Sym}_n} (-1)^{\sigma} \alpha(x_{\sigma_1},x_{\sigma_2},...,x_{\sigma_n}).$$

Define the exterior multiplication $\wedge : \Lambda^i M \times \Lambda^j M \longrightarrow \Lambda^{i+j} M$ as $\alpha \wedge \beta := \Pi(\alpha \otimes \beta)$, where $\alpha \otimes \beta$ is a section $\Lambda^i M \otimes \Lambda^j M \subset \bigotimes_{i+j} T^* M$ obtained as their tensor multiplication.

REMARK: The fiber of the bundle Λ^*M at $x \in M$ is identified with the Grassmann algebra $\Lambda^*T_x^*M$. This identification is compatible with the Grassmann product.

DEFINITION: Let $t_1, ..., t_n$ be coordinate functions on \mathbb{R}^n , and $\alpha \in \Lambda^* \mathbb{R}^n$ a monomial obtained as a product of several dt_i : $\alpha = dt_{i_1} \wedge dt_{i_2} \wedge ... \wedge dt_{i_k}$ $i_1 < i_2 < ... < i_k$. Then α is called a coordinate monomial.

De Rham differential

DEFINITION: De Rham differential $d : \Lambda^* M \longrightarrow \Lambda^{*+1} M$ is an \mathbb{R} -linear map satisfying the following conditions.

* For each $f \in \Lambda^0 M = C^{\infty} M$, $d(f) \in \Lambda^1 M$ is equal to the differential $df \in \Lambda^1 M$. $df \in \Lambda^1 M$. $a \in \Lambda^i M, b \in \Lambda^j M$. * $d^2 = 0$.

REMARK: A map on a graded algebra which satisfies the Leibnitz rule above is called **an odd derivation**.

REMARK: The following two lemmas are needed to prove uniqueness of de Rham differential.

LEMMA: Let $A = \bigoplus A^i$ be a graded algebra, $B \subset A$ a set of multiplicative generators, and $D_1, D_2 : A \longrightarrow A$ two odd derivations which are equal on B. **Then** $D_1 = D_2$.

LEMMA: Λ^*M is generated by $C^{\infty}M$ and $d(C^{\infty}M)$.

Proof: By definition, $\Lambda^* M$ is generated by $\Lambda^0 M = C^{\infty} M$ and $\Lambda^1 M$. However, $d(C^{\infty}M)$ generate $\Lambda^1 M$, as shown above.

De Rham differential: uniqueness and existence

THEOREM: De Rham differential is uniquely determined by these axioms.

Proof: De Rham differential is an odd derivation. Its value on $C^{\infty}M$ is defined by the first axiom. On $d(C^{\infty}M)$ de Rham differential valishes, because $d^2 = 0$.

DEFINITION: Let $t_1, ..., t_n$ be coordinate functions on \mathbb{R}^n , α_i coordinate monomials, and $\alpha := \sum f_i \alpha_i$. Define $d(\alpha) := \sum_i \sum_j \frac{df_i}{dt_j} dt_j \wedge \alpha_i$.

EXERCISE:

Check that *d* satisfies the properties of de Rham differential.

COROLLARY: De Rham differential exists on any smooth manifold.

Proof: Locally, de Rham differential *d* exists, as follows from the construction above. Since *d* is unique, it is compatible with restrictions. This means that *d* defines a sheaf morphism. Restricting this sheaf morphism to global sections, we obtain de Rham differential on Λ^*M .

Superalgebras

DEFINITION: Let $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$ be a graded algebra over a field. It is called **graded commutative**, or **supercommutative**, if $ab = (-1)^{ij}ba$ for all $a \in A^i, b \in A^j$.

EXAMPLE: Grassmann algebra Λ^*V is clearly supercommutative.

DEFINITION: Let A^* be a graded commutative algebra, and $D : A^* \longrightarrow A^{*+i}$ be a map which shifts grading by *i*. It is called a **graded derivation** if $D(ab) = D(a)b + (-1)^{ij}aD(b)$, for each $a \in A^j$.

REMARK: If *i* is even, graded derivation is a usual derivation. If it is even, it an odd derivation.

DEFINITION: Let M be a smooth manifold, and $X \in TM$ a vector field. Consider an operation of **convolution with a vector field** $i_X : \Lambda^i M \longrightarrow \Lambda^{i-1} M$, mapping an *i*-form α to an (i-1)-form $v_1, ..., v_{i-1} \longrightarrow \alpha(X, v_1, ..., v_{i-1})$

EXERCISE: Prove that i_X is an odd derivation.

Supercommutator

DEFINITION: Let A^* be a graded vector space, and $E : A^* \longrightarrow A^{*+i}$, $F : A^* \longrightarrow A^{*+j}$ operators shifting the grading by i, j. Define the supercommutator $\{E, F\} := EF - (-1)^{ij}FE$.

DEFINITION: An endomorphism which shifts a grading by i is called even if i is even, and odd otherwise.

EXERCISE: Prove that a supercommutator satisfies **graded Jacobi identity**,

$$\{E, \{F, G\}\} = \{\{E, F\}, G\} + (-1)^{\tilde{E}\tilde{F}}\{F, \{E, G\}\}$$

where \tilde{E} and \tilde{F} are 0 if E, F are even, and 1 otherwise.

REMARK: There is a simple mnemonic rule which allows one to remember a superidentity, if you know the commutative analogue. Each time when in commutative case two letters E, F are exchanged, in supercommutative case one needs to multiply by $(-1)^{\tilde{E}\tilde{F}}$.

EXERCISE: Prove that a supercommutator of superderivations is again a superderivation.

Pullback of a differential form

DEFINITION: Let $M \xrightarrow{\varphi} N$ be a morphism of smooth manifolds, and $\alpha \in \Lambda^i N$ be a differential form. Consider an *i*-form $\varphi^* \alpha$ taking value

 $\alpha |_{\varphi(m)} (D_{\varphi}(x_1), \dots D_{\varphi}(x_i))$

on $x_1, ..., x_i \in T_m M$. It is called **the pullback of** α . If $M \xrightarrow{\varphi} N$ is a closed embedding, the form $\varphi^* \alpha$ is called **the restriction** of α to $M \hookrightarrow N$.

LEMMA: (*) Let $\Psi_1, \Psi_2 : \Lambda^* N \longrightarrow \Lambda^* M$ be two maps which satisfy graded Leibnitz identity, supercommutes with de Rham differential, and satisfy $\Psi_1|_{C^{\infty}M} = \Psi_2|_{C^{\infty}M}$. Then $\Psi_1 = \Psi_2$.

Proof: The algebra $\Lambda^* M$ is generated multiplicatively by $C^{\infty} M$ and $d(C^{\infty} M)$; restrictions of Ψ_i to these two spaces are equal.

CLAIM: Pullback commutes with the de Rham differential.

Proof: Let $d_1, d_2 : \Lambda^* N \longrightarrow \Lambda^{*+1} M$ be the maps $d_1 = \varphi^* \circ d$ and $d_2 = d \circ \varphi^*$. **These maps satisfy the Leibnitz identity, and they are equal on** $C^{\infty}M$. The super-commutator $\delta := \{d_i, d\}$ is equal to $d \circ \varphi^* \circ d$, it commutes with d, and equal 0 on functions. By Lemma (*), $\delta = 0$. Then d_i supercommutes with d. Applying Lemma (*) again, we obtain that $d_1 = d_2$.