Geometry of manifolds

lecture 9

Misha Verbitsky

Université Libre de Bruxelles
December 7, 2015

Sheaves of modules (reminder)

REMARK: Let $A: \varphi \longrightarrow B$ be a ring homomorphism, and V a B-module. Then V is equipped with a natural A-module structure: $a v:=\varphi(a) v$.

DEFINITION: Let \mathcal{F} be a sheaf of rings on a topological space M, and \mathcal{B} another sheaf. It is called a sheaf of \mathcal{F}-modules if for all $U \subset M$ the space of sections $\mathcal{B}(U)$ is equipped with a structure of $\mathcal{F}(U)$-module, and for all $U^{\prime} \subset U$, the restriction $\operatorname{map} \mathcal{B}(U) \xrightarrow{\varphi_{U, U^{\prime}}} \mathcal{B}\left(U^{\prime}\right)$ is a homomorphism of $\mathcal{F}(U)$-modules (use the remark above to obtain a structure of $\mathcal{F}(U)$-module on $\mathcal{B}\left(U^{\prime}\right)$).

DEFINITION: A free sheaf of modules \mathcal{F}^{n} over a ring sheaf \mathcal{F} maps an open set U to the space $\mathcal{F}(U)^{n}$.

DEFINITION: Locally free sheaf of modules over a sheaf of rings \mathcal{F} is a sheaf of modules \mathcal{B} satisfying the following condition. For each $x \in M$ there exists a neighbourhood $U \ni x$ such that the restriction $\left.\mathcal{B}\right|_{U}$ is free.

DEFINITION: A vector bundle on a smooth manifold M is a locally free sheaf of $C^{\infty} M$-modules.

Tensor product (reminder)

DEFINITION: Let V, V^{\prime} be R-modules, W a free abelian group generated by $v \otimes v^{\prime}$, with $v \in V, v^{\prime} \in V^{\prime}$, and $W_{1} \subset W$ a subgroup generated by combinations $r v \otimes v^{\prime}-v \otimes r v^{\prime},\left(v_{1}+v_{2}\right) \otimes v^{\prime}-v_{1} \otimes v^{\prime}-v_{2} \otimes v^{\prime}$ and $v \otimes\left(v_{1}^{\prime}+v_{2}^{\prime}\right)-v \otimes v_{1}^{\prime}-v \otimes v_{2}^{\prime}$. Define the tensor product $V \otimes_{R} V^{\prime}$ as a quotient group W / W_{1}.

EXERCISE: Show that $r \cdot v \otimes v^{\prime} \mapsto(r v) \otimes v^{\prime}$ defines an R-module structure on $V \otimes_{R} V^{\prime}$.

REMARK: Let \mathcal{F} be a sheaf of rings, and \mathcal{B}_{1} and \mathcal{B}_{2} be sheaves of locally free (M, \mathcal{F})-modules. Then

$$
U \longrightarrow \mathcal{B}_{1}(U) \otimes_{\mathcal{F}(U)} \mathcal{B}_{2}(U)
$$

is also a locally free sheaf of modules.

DEFINITION: Tensor product of vector bundles is a tensor product of the corresponding sheaves of modules.

EXERCISE: Let B and B^{\prime} ve vector bundles on $M,\left.B\right|_{x},\left.B^{\prime}\right|_{x}$ their fibers, and $B \otimes_{C^{\infty}{ }_{M}} B^{\prime}$ their tensor product. Prove that $\left.B \otimes_{C^{\infty} M} B^{\prime}\right|_{x}=\left.\left.B\right|_{x} \otimes_{\mathbb{R}} B^{\prime}\right|_{x}$.

The Grassmann algebra (reminder)

DEFINITION: Let V be a vector space, and $W \subset V \otimes V$ a graded subspace, generated by vectors $x \otimes y+y \otimes x$ and $x \otimes x$, for all $x, y \in V$. A graded algebra defined by the generator space V and the relation space W is called Grassmann algebra, or exterior algebra, and denoted $\wedge^{*}(V)$. The space $\Lambda^{i}(V)$ is called i-th exterior power of V, and the multiplication in $\wedge^{*}(V)-$ exterior multiplication. Exterior multiplication is denoted \wedge.

EXERCISE: Prove that $\wedge^{1} V$ is isomorphic to V.

DEFINITION: An element of Grassmann algebra is called even if it lies in $\oplus_{i \in \mathbb{Z}} \wedge^{2 i}(V)$ and odd if it lies in $\oplus_{i \in \mathbb{Z}} \wedge^{2 i+1}(V)$. For an even or odd $x \in \wedge^{*}(V)$, we define a number \tilde{x} called parity of x. The parity of x is 0 for even x and 1 for odd.

CLAIM: In Grassmann algebra, $x \wedge y=(-1)^{\tilde{x} \tilde{y}} y \wedge x$.

Antisymmetrization (reminder)

DEFINITION: Let V be a vector space, $T^{\otimes i} V$ the i-th tensor power of V, and Alt : $T^{\otimes i} V \longrightarrow \wedge^{i} V$ be the antisymmetrization,

$$
\operatorname{Alt}(\eta)\left(x_{1}, \ldots, x_{i}\right):=\frac{1}{i!} \sum_{\sigma \in \Sigma_{i}}(-1)^{\tilde{\sigma}} \eta\left(x_{\sigma_{1}}, \ldots, x_{\sigma_{i}}\right)
$$

where Σ_{i} is the group of permutations, and $\tilde{\sigma}=1$ for odd permutations, and 0 for even. We say that a vector $\eta \in V^{\otimes d}$ is totally antisymmetric if $\eta=\operatorname{Alt}(\eta)$.

EXERCISE: Let $\eta \in V^{\otimes d}$ be a vector which satisfies $\eta=\frac{1}{d!}(-1)^{\tilde{\sigma}} \sum_{I \in S_{d}} I(\eta)$. Prove that $I(\eta)=(-1)^{\tilde{\sigma}} \eta$ for any permutation $\sigma \in S_{d}$.

REMARK: This implies that $\operatorname{Alt}(\operatorname{Alt}(\eta))=\operatorname{Alt}(\eta)$ for any $\eta \in V^{\otimes d}$.
CLAIM: Let $W \subset V \otimes V$ be the space of relations of Grassmann algebra defined above. Then $\operatorname{Alt}(T(V) \cdot W \cdot T(V))=0$.

COROLLARY: This defines a natural linear map ψ from $\wedge^{*}(V)$ to the space im Alt of totally antisymmetric tensors.

Antisymmetric tensors and Grassmann algebra (reminder)

CLAIM: The map ψ gives an isomorphism of $\wedge^{*}(V)$ and im Alt.

REMARK: From now on, we identify $\wedge^{*}(V)$ and the space of totally antisymmetric tensors.

REMARK: This identification defines multiplicative structure on the space im Alt of totally antisymmetric tensors.

CLAIM: The multiplicative structure on im Alt can be written as follows. Given totally antisymmetric tensors $\alpha, \beta \in \mathrm{im}$ Alt, to find $\alpha \wedge \beta \in \mathrm{im}$ Alt $=$ $\wedge^{*}(V)$, we muptiply α and β in $T(V)$ and apply Alt.

Proof: It suffices to check this on monomials.

Cotangent bundle

DEFINITION: Let M be a smooth manifold, $T M$ the tangent bundle, and $\wedge^{1} M=T^{*} M$ its dual bundle. It is called cotangent bundle of M. Sections of $T^{*} M$ are called 1-forms or covectors on M. For any $f \in C^{\infty} M$, consider a functional $T M \longrightarrow C^{\infty} M$ obtained by mapping $X \in T M$ to a derivation of $f: X \longrightarrow D_{X}(f)$. Since this map is linear in X, it defines a section $d f \in T^{*} M$ called the differential of f.

CLAIM: $\wedge^{1} M$ is generated as a $C^{\infty} M$-module by $d\left(C^{\infty} M\right)$.
Proof: Locally in coordinates x_{1}, \ldots, x_{n} this is clear, because the covectors $d x_{1}, \ldots, d x_{n}$ dive a basis in $T^{*} M$ dual to the basis $\frac{d}{d x_{1}}, \ldots, \frac{d}{d x_{n}}$ in $T M$.

DEFINITION: Let M be a smooth manifold. A bundle of differential i-forms on M is the bundle $\wedge^{i} T^{*} M$ of antisymmetric i-forms on $T M$. It is denoted $\wedge^{i} M$.

REMARK: $\wedge^{0} M=C^{\infty} M$.

De Rham algebra

DEFINITION: Let $\alpha \in\left(V^{*}\right)^{\otimes i}$ and $\alpha \in\left(V^{*}\right)^{\otimes j}$ be polylinear forms on V. Define the tensor multiplication $\alpha \otimes \beta$ as

$$
\alpha \otimes \beta\left(x_{1}, \ldots, x_{i+j}\right):=\alpha\left(x_{1}, \ldots, x_{j}\right) \beta\left(x_{i+1}, \ldots, x_{i+j}\right) .
$$

DEFINITION: Let $\otimes_{k} T^{*} M \xrightarrow{\Pi} \wedge^{k} M$ be the antisymmetrization map,

$$
\Pi(\alpha)\left(x_{1}, \ldots, x_{n}\right):=\frac{1}{n!} \sum_{\sigma \in \operatorname{Sym}_{n}}(-1)^{\sigma} \alpha\left(x_{\sigma_{1}}, x_{\sigma_{2}}, \ldots, x_{\sigma_{n}}\right) .
$$

Define the exterior multiplication $\wedge: \wedge^{i} M \times \wedge^{j} M \longrightarrow \wedge^{i+j_{M}}$ as $\alpha \wedge \beta:=$ $\Pi(\alpha \otimes \beta)$, where $\alpha \otimes \beta$ is a section $\wedge^{i} M \otimes \wedge^{j} M \subset \otimes_{i+j} T^{*} M$ obtained as their tensor multiplication.

REMARK: The fiber of the bundle $\wedge^{*} M$ at $x \in M$ is identified with the Grassmann algebra $\wedge^{*} T_{x}^{*} M$. This identification is compatible with the Grassmann product.

DEFINITION: Let t_{1}, \ldots, t_{n} be coordinate functions on \mathbb{R}^{n}, and $\alpha \in \wedge^{*} \mathbb{R}^{n}$ a monomial obtained as a product of several $d t_{i}$: $\alpha=d t_{i_{1}} \wedge d t_{i_{2}} \wedge \ldots \wedge d t_{i_{k}}$ $i_{1}<i_{2}<\ldots<i_{k}$. Then α is called a coordinate monomial.

De Rham differential

DEFINITION: De Rham differential $d: \Lambda^{*} M \longrightarrow \Lambda^{*+1} M$ is an \mathbb{R}-linear map satisfying the following conditions.

* For each $f \in \wedge^{0} M=C^{\infty} M, d(f) \in \wedge^{1} M$ is equal to the differential $d f \in \wedge^{1} M . \quad *$ (Leibnitz rule) $d(a \wedge b)=d a \wedge b+(-1)^{j} a \wedge d b$ for any $a \in \wedge^{i} M, b \in \wedge^{j} M$.
* $d^{2}=0$.

REMARK: A map on a graded algebra which satisfies the Leibnitz rule above is called an odd derivation.

REMARK: The following two lemmas are needed to prove uniqueness of de Rham differential.

LEMMA: Let $A=\oplus A^{i}$ be a graded algebra, $B \subset A$ a set of multiplicative generators, and $D_{1}, D_{2}: A \longrightarrow A$ two odd derivations which are equal on B. Then $D_{1}=D_{2}$.

LEMMA: $\wedge^{*} M$ is generated by $C^{\infty} M$ and $d\left(C^{\infty} M\right)$.
Proof: By definition, $\wedge^{*} M$ is generated by $\wedge^{0} M=C^{\infty} M$ and $\wedge^{1} M$. However, $d\left(C^{\infty} M\right)$ generate $\wedge^{1} M$, as shown above.

De Rham differential: uniqueness and existence

THEOREM:

De Rham differential is uniquely determined by these axioms.

Proof: De Rham differential is an odd derivation. Its value on $C^{\infty} M$ is defined by the first axiom. On $d\left(C^{\infty} M\right)$ de Rham differential valishes, because $d^{2}=0$.

DEFINITION: Let t_{1}, \ldots, t_{n} be coordinate functions on $\mathbb{R}^{n}, \alpha_{i}$ coordinate monomials, and $\alpha:=\sum f_{i} \alpha_{i}$. Define $d(\alpha):=\sum_{i} \sum_{j} \frac{d f_{i}}{d t_{j}} d t_{j} \wedge \alpha_{i}$.

EXERCISE:

Check that d satisfies the properties of de Rham differential.

COROLLARY: De Rham differential exists on any smooth manifold.
Proof: Locally, de Rham differential d exists, as follows from the construction above. Since d is unique, it is compatible with restrictions. This means that d defines a sheaf morphism. Restricting this sheaf morphism to global sections, we obtain de Rham differential on $\wedge^{*} M$.

Superalgebras

DEFINITION: Let $A^{*}=\oplus_{i \in \mathbb{Z}} A^{i}$ be a graded algebra over a field. It is called graded commutative, or supercommutative, if $a b=(-1)^{i j} b a$ for all $a \in A^{i}, b \in A^{j}$.

EXAMPLE: Grassmann algebra $\wedge^{*} V$ is clearly supercommutative.

DEFINITION: Let A^{*} be a graded commutative algebra, and $D: A^{*} \longrightarrow A^{*+i}$ be a map which shifts grading by i. It is called a graded derivation if $D(a b)=D(a) b+(-1)^{i j} a D(b)$, for each $a \in A^{j}$.

REMARK: If i is even, graded derivation is a usual derivation. If it is even, it an odd derivation.

DEFINITION: Let M be a smooth manifold, and $X \in T M$ a vector field. Consider an operation of convolution with a vector field $i_{X}: \wedge^{i} M \longrightarrow \wedge^{i-1} M$, mapping an i-form α to an ($i-1$)-form $v_{1}, \ldots, v_{i-1} \longrightarrow \alpha\left(X, v_{1}, \ldots, v_{i-1}\right)$

EXERCISE: Prove that i_{X} is an odd derivation.

Supercommutator

DEFINITION: Let A^{*} be a graded vector space, and $E: A^{*} \longrightarrow A^{*+i}$, $F: \quad A^{*} \longrightarrow A^{*+j}$ operators shifting the grading by i, j. Define the supercommutator $\{E, F\}:=E F-(-1)^{i j} F E$.

DEFINITION: An endomorphism which shifts a grading by i is called even if i is even, and odd otherwise.

EXERCISE: Prove that a supercommutator satisfies graded Jacobi identity,

$$
\{E,\{F, G\}\}=\{\{E, F\}, G\}+(-1)^{\tilde{E} \tilde{F}}\{F,\{E, G\}\}
$$

where \tilde{E} and \tilde{F} are 0 if E, F are even, and 1 otherwise.

REMARK: There is a simple mnemonic rule which allows one to remember a superidentity, if you know the commutative analogue. Each time when in commutative case two letters E, F are exchanged, in supercommutative case one needs to multiply by $(-1)^{\tilde{E} \tilde{F}}$.

EXERCISE: Prove that a supercommutator of superderivations is again a superderivation.

Pullback of a differential form

DEFINITION: Let $M \xrightarrow{\varphi} N$ be a morphism of smooth manifolds, and $\alpha \in \Lambda^{i} N$ be a differential form. Consider an i-form $\varphi^{*} \alpha$ taking value

$$
\left.\alpha\right|_{\varphi(m)}\left(D_{\varphi}\left(x_{1}\right), \ldots D_{\varphi}\left(x_{i}\right)\right)
$$

on $x_{1}, \ldots, x_{i} \in T_{m} M$. It is called the pullback of α. If $M \xrightarrow{\varphi} N$ is a closed embedding, the form $\varphi^{*} \alpha$ is called the restriction of α to $M \hookrightarrow N$.

LEMMA: (*) Let $\Psi_{1}, \Psi_{2}: \wedge^{*} N \longrightarrow \wedge^{*} M$ be two maps which satisfy graded Leibnitz identity, supercommutes with de Rham differential, and satisfy $\left.\Psi_{1}\right|_{C^{\infty} M}=$ $\left.\Psi_{2}\right|_{C^{\infty} M}$. Then $\Psi_{1}=\Psi_{2}$.

Proof: The algebra $\wedge^{*} M$ is generated multiplicatively by $C^{\infty} M$ and $d\left(C^{\infty} M\right)$; restrictions of Ψ_{i} to these two spaces are equal.

CLAIM: Pullback commutes with the de Rham differential.

Proof: Let $d_{1}, d_{2}: \wedge^{*} N \longrightarrow \wedge^{*+1} M$ be the maps $d_{1}=\varphi^{*} \circ d$ and $d_{2}=d \circ \varphi^{*}$. These maps satisfy the Leibnitz identity, and they are equal on $C^{\infty} M$. The super-commutator $\delta:=\left\{d_{i}, d\right\}$ is equal to $d \circ \varphi^{*} \circ d$, it commutes with d, and equal 0 on functions. By Lemma (*), $\delta=0$. Then d_{i} supercommutes with d. Applying Lemma (*) again, we obtain that $d_{1}=d_{2}$.

