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Université Libre de Bruxelles

December 7, 2015

1



Geometry of manifolds, lecture 10 M. Verbitsky

The Grassmann algebra (reminder)

DEFINITION: Let V be a vector space, and W ⊂ V ⊗ V a graded subspace,

generated by vectors x ⊗ y + y ⊗ x and x ⊗ x, for all x, y ∈ V . A graded

algebra defined by the generator space V and the relation space W is called

Grassmann algebra, or exterior algebra, and denoted Λ∗(V ). The space

Λi(V ) is called i-th exterior power of V , and the multiplication in Λ∗(V ) –

exterior multiplication. Exterior multiplication is denoted ∧.

EXERCISE: Prove that Λ1V is isomorphic to V .

DEFINITION: An element of Grassmann algebra is called even if it lies in⊕
i∈Z Λ2i(V ) and odd if it lies in

⊕
i∈Z Λ2i+1(V ). For an even or odd x ∈ Λ∗(V ),

we define a number x̃ called parity of x. The parity of x is 0 for even x and

1 for odd.

CLAIM: In Grassmann algebra, x ∧ y = (−1)x̃ỹy ∧ x.
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Antisymmetrization (reminder)

DEFINITION: Let V be a vector space, T⊗iV the i-th tensor power of V ,

and Alt : T⊗iV −→ ΛiV be the antisymmetrization,

Alt(η)(x1, ..., xi) :=
1

i!

∑
σ∈Σi

(−1)σ̃η(xσ1, ..., xσi)

where Σi is the group of permutations, and σ̃ = 1 for odd permutations,

and 0 for even. We say that a vector η ∈ V ⊗d is totally antisymmetric if

η = Alt(η).

EXERCISE: Let η ∈ V ⊗d be a vector which satisfies η = 1
d!(−1)σ̃

∑
I∈Sd I(η).

Prove that I(η) = (−1)σ̃η for any permutation σ ∈ Sd.

REMARK: This implies that Alt(Alt(η)) = Alt(η) for any η ∈ V ⊗d.

CLAIM: Let W ⊂ V ⊗ V be the space of relations of Grassmann algebra

defined above. Then Alt(T (V ) ·W · T (V )) = 0.

COROLLARY: This defines a natural linear map Ψ from Λ∗(V ) to the

space im Alt of totally antisymmetric tensors.
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Cotangent bundle (reminder)

DEFINITION: Let M be a smooth manifold, TM the tangent bundle, and

Λ1M = T ∗M its dual bundle. It is called cotangent bundle of M . Sections

of T ∗M are called 1-forms or covectors on M . For any f ∈ C∞M , consider

a functional TM −→ C∞M obtained by mapping X ∈ TM to a derivation of

f : X −→DX(f). Since this map is linear in X, it defines a section df ∈ T ∗M
called the differential of f .

CLAIM: Λ1M is generated as a C∞M-module by d(C∞M).

Proof: Locally in coordinates x1, ..., xn this is clear, because the covectors

dx1, ..., dxn dive a basis in T ∗M dual to the basis d
dx1

, ..., d
dxn

in TM .

DEFINITION: Let M be a smooth manifold. A bundle of differential

i-forms on M is the bundle ΛiT ∗M of antisymmetric i-forms on TM . It is

denoted ΛiM .

REMARK: Λ0M = C∞M .
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De Rham algebra (reminder)

DEFINITION: Let α ∈ (V ∗)⊗i and α ∈ (V ∗)⊗j be polylinear forms on V .

Define the tensor multiplication α⊗ β as

α⊗ β(x1, ..., xi+j) := α(x1, ..., xj)β(xi+1, ..., xi+j).

DEFINITION: Let
⊗
k T
∗M Π−→ ΛkM be the antisymmetrization map,

Π(α)(x1, ..., xn) :=
1

n!

∑
σ∈Symn

(−1)σα(xσ1, xσ2, ..., xσn).

Define the exterior multiplication ∧ : ΛiM × ΛjM −→ Λi+jM as α ∧ β :=

Π(α⊗ β), where α⊗ β is a section ΛiM ⊗ ΛjM ⊂
⊗
i+j T

∗M obtained as their

tensor multiplication.

REMARK: The fiber of the bundle Λ∗M at x ∈ M is identified with the

Grassmann algebra Λ∗T ∗xM. This identification is compatible with the Grass-

mann product.

DEFINITION: Let t1, ..., tn be coordinate functions on Rn, and α ∈ Λ∗Rn

a monomial obtained as a product of several dti: α = dti1 ∧ dti2 ∧ ... ∧ dtik
i1 < i2 < ... < ik. Then α is called a coordinate monomial.
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De Rham differential (remidner)

DEFINITION: De Rham differential d : Λ∗M −→ Λ∗+1M is an R-linear
map satisfying the following conditions.

* For each f ∈ Λ0M = C∞M , d(f) ∈ Λ1M is equal to the differential
df ∈ Λ1M . * (Leibnitz rule) d(a ∧ b) = da ∧ b + (−1)ja ∧ db for any
a ∈ ΛiM, b ∈ ΛjM .

* d2 = 0.

REMARK: A map on a graded algebra which satisfies the Leibnitz rule above
is called an odd derivation.

REMARK: The following two lemmas are needed to prove uniqueness of de
Rham differential.

LEMMA: Let A =
⊕
Ai be a graded algebra, B ⊂ A a set of multiplicative

generators, and D1, D2 : A−→A two odd derivations which are equal on B.
Then D1 = D2.

LEMMA: Λ∗M is generated by C∞M and d(C∞M).

Proof: By definition, Λ∗M is generated by Λ0M = C∞M and Λ1M . However,
d(C∞M) generate Λ1M , as shown above.
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De Rham differential: uniqueness and existence (reminder)

THEOREM:

De Rham differential is uniquely determined by these axioms.

Proof: De Rham differential is an odd derivation. Its value on C∞M is defined

by the first axiom. On d(C∞M) de Rham differential valishes, because d2 = 0.

DEFINITION: Let t1, ..., tn be coordinate functions on Rn, αi coordinate

monomials, and α :=
∑
fiαi. Define d(α) :=

∑
i
∑
j
dfi
dtj
dtj ∧ αi.

EXERCISE:

Check that d satisfies the properties of de Rham differential.

COROLLARY: De Rham differential exists on any smooth manifold.

Proof: Locally, de Rham differential d exists, as follows from the construction

above. Since d is unique, it is compatible with restrictions. This means that

d defines a sheaf morphism. Restricting this sheaf morphism to global

sections, we obtain de Rham differential on Λ∗M .

7



Geometry of manifolds, lecture 10 M. Verbitsky

Superalgebras

DEFINITION: Let A∗ = ⊕i∈ZAi be a graded algebra over a field. It is

called graded commutative, or supercommutative, if ab = (−1)ijba for all

a ∈ Ai, b ∈ Aj.

EXAMPLE: Grassmann algebra Λ∗V is clearly supercommutative.

DEFINITION: Let A∗ be a graded commutative algebra, and D : A∗ −→A∗+i

be a map which shifts grading by i. It is called a graded derivation, if

D(ab) = D(a)b+ (−1)ijaD(b), for each a ∈ Aj.

REMARK: If i is even, graded derivation is a usual derivation. If it is even,

it an odd derivation.

DEFINITION: Let M be a smooth manifold, and X ∈ TM a vector field.

Consider an operation of convolution with a vector field iX : ΛiM −→ Λi−1M ,

mapping an i-form α to an (i− 1)-form v1, ..., vi−1 −→ α(X, v1, ..., vi−1)

EXERCISE: Prove that iX is an odd derivation.
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Supercommutator

DEFINITION: Let A∗ be a graded vector space, and E : A∗ −→A∗+i,
F : A∗ −→A∗+j operators shifting the grading by i, j. Define the super-

commutator {E,F} := EF − (−1)ijFE.

DEFINITION: An endomorphism of a graded vector space which shifts grad-
ing by i is called even if i is even, and odd otherwise.

EXERCISE: Prove that the supercommutator satisfies graded Jacobi iden-

tity,

{E, {F,G}} = {{E,F}, G}+ (−1)ẼF̃{F, {E,G}}

where Ẽ and F̃ are 0 if E,F are even, and 1 otherwise.

REMARK: There is a simple mnemonic rule which allows one to remember
a superidentity, if you know the commutative analogue. Each time when in

commutative case two letters E, F are exchanged, in supercommuta-

tive case one needs to multiply by (−1)ẼF̃ .

EXERCISE: Prove that a supercommutator of superderivations is again

a superderivation.
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Pullback of a differential form

DEFINITION: Let M
ϕ−→ N be a morphism of smooth manifolds, and

α ∈ ΛiN be a differential form. Consider an i-form ϕ∗α taking value

α
∣∣∣ϕ(m)(Dϕ(x1), ...Dϕ(xi))

on x1, ..., xi ∈ TmM . It is called the pullback of α. If M
ϕ−→ N is a closed

embedding, the form ϕ∗α is called the restriction of α to M ↪→ N .

LEMMA: (*) Let Ψ1,Ψ2 : Λ∗N −→ Λ∗M be two maps which satisfy graded
Leibnitz identity, supercommutes with de Rham differential, and satisfy Ψ1|C∞M =
Ψ2|C∞M . Then Ψ1 = Ψ2.

Proof: The algebra Λ∗M is generated multiplicatively by C∞M and d(C∞M);
restrictions of Ψi to these two spaces are equal.

CLAIM: Pullback commutes with the de Rham differential.

Proof: Let d1, d2 : Λ∗N −→ Λ∗+1M be the maps d1 = ϕ∗ ◦ d and d2 = d ◦ ϕ∗.
These maps satisfy the Leibnitz identity, and they are equal on C∞M.
The super-commutator δ := {di, d} is equal to d ◦ ϕ∗ ◦ d, it commutes with d,
and equal 0 on functions. By Lemma (*), δ = 0. Then di supercommutes
with d. Applying Lemma (*) again, we obtain that d1 = d2.
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Lie derivative

DEFINITION: Let B be a smooth manifold, and v ∈ TM a vector field. An

endomorphism Liev : Λ∗M −→ Λ∗M , preserving the grading is called a Lie

derivative along v if it satisfies the following conditions.

(1) On functions Liev is equal to a derivative along v. (2) [Liev, d] = 0.

(3) Liev is a derivation of the de Rham algebra.

REMARK: The algebra Λ∗(M) is generated by C∞M = Λ0(M) and d(C∞M).

The restriction Liev |C∞M is determined by the first axiom. On d(C∞M) is

also determined because Liev(df) = d(Liev f). Therefore, Liev is uniquely

defined by these axioms.

EXERCISE: Prove that {d, {d,E}} = 0 for each E ∈ End(Λ∗M).

THEOREM: (Cartan’s formula) Let iv be a convolution with a vector field,

iv(η) = η(v, ·, ·, ..., ·) Then {d, iv} is equal to the Lie derivative along v.

Proof: {d, {d, iv}} = 0 by the lemma above. A supercommutator of two

graded derivations is a graded derivation. Finally, {d, iv} acts on functions as

iv(df) = 〈v, df〉.
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Flow of diffeomorphisms

DEFINITION: Let f : M × [a, b]−→M be a smooth map such that for all

t ∈ [a, b] the restriction ft := f
∣∣∣M×{t} : M −→M is a diffeomorphism. Then f

is called a flow of diffeomorphisms.

CLAIM: Let Vt be a flow of diffeomorphisms, f ∈ C∞M , and V ∗t (f)(x) :=

f(Vt(x)). Consider the map d
dtVt|t=c : C∞M −→ C∞M , with d

dtVt|t=c(f) =

(V −1
c )∗dVtdt |t=cf . Then f −→ (V −1

t )∗ ddtV
∗
t f is a derivation (that is, a vector

field).

Proof: d
dtV
∗
t (fg) = V ∗t (f) ddtV

∗
t g + d

dtV
∗
t fV

∗
t (g) by the Leignitz rule, giving

(V −1
t )∗

d

dt
V ∗t (fg) = f(V −1

t )∗
d

dt
V ∗t g + g(V −1

t )∗
d

dt
V ∗t f.

DEFINITION: The vector field d
dtVt|t=c is called a vector field tangent to

a flow of diffeomorphisms Vt at t = c.
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Lie derivative and a flow of diffeomorphisms

DEFINITION: Let vt be a vector field on M , smoothly depending on the

“time parameter” t ∈ [a, b], and V : M× [a, b]−→M a flow of diffeomorphisms

which satisfies d
dtVt = vt for each t ∈ [a, b], and V0 = Id. Then Vt is called an

exponent of vt.

CLAIM: Exponent of a vector field is unique; it exists when M is compact.

This statement is called “Picard-Lindelöf theorem” or “uniqueness and

existence of solutions of ordinary differential equations”.

PROPOSITION: Let vt be a time-dependent vector field, t ∈ [a, b], and Vt
its exponent. For any α ∈ Λ∗M , consider V ∗t α as a Λ∗M-valued function of t.

Then Liev0(α) = d
dt|t=0(V ∗t α).

Proof: By definition of differential, Liev0 f = 〈df, v0〉, hence Liev0 f = d
dt|t=0V

∗
t (f).

The operator Liev0 commutes with de Rham differential, because Liev =

ivd + div. The map d
dtVt commutes with de Rham differential, because it

is a derivative of a pullback. Now Lemma (*) is applied to show that

Liev0 α = d
dt|t=0(V ∗t α).
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Homotopy operators

DEFINITION: A complex is a sequence of vector spaces and homomor-
phisms ...

d−→ Ci−1
d−→ Ci

d−→ Ci+1
d−→ ...

satisfying d2 = 0. Homomorphism (C∗, d)−→ (C′∗, d) of complexes is a se-
quence of homomorphism Ci −→ C′i commuting with the differentials.

DEFINITION: An element c ∈ Ci is called closed if c ∈ ker d and exact if
c ∈ im d. Cohomology of a complex is a quotient ker d

im d .

REMARK: A homomorphism of complexes induces a natural homomorphism
of cohomology groups.

DEFINITION: Let (C∗, d), (C′∗, d) be a complex. Homotopy is a sequence
of maps h : C∗ −→ C′∗−1. Two homomorphisms f, g : (C∗, d)−→ (C′∗, d) are
called homotopy equivalent if f − g = {h, d} for some homotopy operator h.

CLAIM: Let f, f ′ : (C∗, d)−→ (C′∗, d) be homotopy equivalent maps of com-
plexes. Then f and f ′ induce the same maps on cohomology.

Proof. Step 1: Let g := f − f ′. It would suffice to prove that g induces 0
on cohomology.
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Lie derivative and homotopy

CLAIM: Let f, f ′ : (C∗, d)−→ (C′∗, d) be homotopy equivalent maps of com-

plexes. Then f and f ′ induce the same maps on cohomology.

Proof. Step 1: Let g := f − f ′. It would suffice to prove that g induces 0

on cohomology.

Step 2: Let c ∈ Ci be a closed element. Then g(c) = dh(c) + hd(c) = dh(c)

exact.

DEFINITION: Let d be de Rham differential. A form in ker d is called closed,

a form in im d is called exact. Since d2 = 0, any exact form is closed. The

group of i-th de Rham cohomology of M , denoted Hi(M), is a quotient

of a space of closed i-forms by the exact: H∗(M) = ker d
im d .

REMARK: Let v be a vector field, and Liev : Λ∗M −→ Λ∗M be the corre-

sponding Lie derivative. Then Liev commutes with the de Rham differ-

ential, and acts trivially on the de Rham cohomology.

Proof: Liev = ivd+ div maps closed forms to exact.
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Poincaré lemma

DEFINITION: An open subset U ⊂ Rn is called starlike if for any x ∈ U the

interval [0, x] belongs to U .

THEOREM: (Poicaré lemma) Let U ⊂ Rn be a starlike subset. Then

Hi(U) = 0 for i > 0.

REMARK: The proof would follow if we construct a vector field ~r such

that Lie~r is invertible on Λ∗(M): Lie~rR = Id. Indeed, for any closed form α

we would have α = Lie~rRα = di~rRα+ i~rRdα = di~rRα, hence any closed form

is exact.

Then Poincaré lemma is implied by the following statement.

PROPOSITION: Let U ⊂ Rn be a starlike subset, t1, ..., tn coordinate func-

tions, and ~r :=
∑
ti
d
dti

the radial vector field. Then Lie~r is invertible on

Λi(U) for i > 0.
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Radial vector field on starlike sets

PROPOSITION: Let U ⊂ Rn be a starlike subset, t1, ..., tn coordinate func-

tions, and ~r :=
∑
ti
d
dti

the radial vector field. Then Lie~r is invertible on

Λi(U) for i > 0.

Proof. Step 1: Let t be the coordinate function on a real line, f(t) ∈ C∞R
a smooth function, and v := t ddt a vector field. Define R(f)(t) :=

∫ 1
0
f(λt)
λ dλ.

Then this integral converges whenever f(0) = 0, and satisfies LievR(f) = f .

Indeed, ∫ 1

0

f(λt)

λ
dλ =

∫ t
0

f(λt)

tλ
d(tλ) =

∫ t
0

f(z)

z
d(z),

hence LievR(f) = tf(t)
t = f(t).

Step 2: Consider a function f ∈ C∞Rn satisfying f(0) = 0, and x =

(x1, ..., xn) ∈ Rn. Then

R(f)(x) :=
∫ 1

0

f(λx)

λ
dλ

converges, and satisfies Lie~rR(f) = f.
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Radial vector field on starlike sets (2)

Step 3: Consider a differential form α ∈ Λi, and let hλx−→ λx be the homo-

thety with coefficient λ ∈ [0,1]. Define

R(α) :=
∫ 1

0
λ−1h∗λ(α)dλ.

Since h∗λ(α) = 0 for λ = 0, this integral converges. It remains to prove that

Lie~rR = Id.

Step 4: Let α be a coordinate monomial, α = dti1 ∧ dti2 ∧ ... ∧ dtik. Clearly,

Lie~r(T
−1α) = 0, where T = ti1ti2...tik. Since h∗λ(fα) = h∗λ(Tf)T−1α, we have

R(fα) = R(Tf)T−1α for any function f ∈ C∞M. This gives

Lie~rR(fα) = Lie~rR(Tf)T−1α = TfT−1α = fα.
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