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The Grassmann algebra (reminder)

DEFINITION: Let V be a vector space, and W C V® V a graded subspace,
generated by vectors xr @y +y® x and z ® xz, for all z,y € V. A graded
algebra defined by the generator space V and the relation space W is called
Grassmann algebra, or exterior algebra, and denoted A*(V). The space
AY (V) is called i-th exterior power of V, and the multiplication in A*(V) —
exterior multiplication. Exterior multiplication is denoted A.

EXERCISE: Prove that AlV is iIsomorphic to V.

DEFINITION: An element of Grassmann algebra is called even if it lies in
D,z N2H(V) and odd if it lies in @,cz A2 T1(V). For an even or odd x € A*(V),
we define a number z called parity of x. The parity of z is O for even x and
1 for odd.

CLAIM: In Grassmann algebra, z Ay = (—1)%y A z.
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Antisymmetrization (reminder)

DEFINITION: Let V be a vector space, T®'V the i-th tensor power of V,
and Alt: T®V — A'V be the antisymmetrization,

1 ~
Alt(n) (@1, zi) == > (=1)7n(2oy, ..., To;)
7! oES;

where 2_; is the group of permutations, and ¢ = 1 for odd permutations,
and O for even. We say that a vector n € V®d s totally antisymmetric if

n = Alt(n).

EXERCISE: Let n € V®? be a vector which satisfies n = 5(—1)% Y ¢g, 1(n).
Prove that I(n) = (—1)%n for any permutation o € S,.

REMARK: This implies that Alt(Alt(n)) = Alt(n) for any n € V®q,

CLAIM: Let W C V ® V be the space of relations of Grassmann algebra
defined above. Then AIt(T (V) -W -T(V)) = 0.

COROLLARY: This defines a natural linear map Vv from A*(V) to the
space im Alt of totally antisymmetric tensors.
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Cotangent bundle (reminder)

DEFINITION: Let M be a smooth manifold, T M the tangent bundle, and
ALM = T*M its dual bundle. It is called cotangent bundle of M. Sections
of T*M are called 1-forms or covectors on M. For any f € C°°M, consider
a functional TM — C°°M obtained by mapping X € T'M to a derivation of
f: X — Dx(f). Since this map is linear in X, it defines a section df € T*M
called the differential of f.

CLAIM: AlM is generated as a C>°M-module by d(C®°M).

Proof: Locally in coordinates xzq,...,xn this is clear, because the covectors
dxq, ..., dzy dive a basis in T*M dual to the basis %1,...,% in TM. m
DEFINITION: Let M be a smooth manifold. A bundle of differential
i-forms on M is the bundle A'T*M of antisymmetric i-forms on TM. It is
denoted A'M.

REMARK: NOM = C>®M.
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De Rham algebra (reminder)

DEFINITION: Let o € (V¥)® and a € (V*)® be polylinear forms on V.
Define the tensor multiplication a ® g as

a B(xla ceey xz—l—]) L= Oé(a?]_, sy ZCJ)B(CEZ_|_]_, ceey mz—l—])

DEFINITION: Let ®.T*M -5 A*M be the antisymmetrization map,

1

N(a)(x1,...,2n) = Z (—1)%a(xoqy; Togy s Tap)-

n: oceSym,,
Define the exterior multiplication A : A'M x ANNM — NTIM as a A B =

N(a® B), where a® B is a section A'M ® NVM C ®;4,;T*M obtained as their
tensor multiplication.

REMARK: The fiber of the bundle A*M at z € M is identified with the
Grassmann algebra A*T 7M. This identification is compatible with the Grass-
mann product.

DEFINITION: Let ¢q,...,t, be coordinate functions on R", and a € A*R"
a monomial obtained as a product of several dt;: « = dt;; Ndt, N\ ... N\di;,
11 <12 < ...< 1. T'hen « is called a coordinate monomial.
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De Rham differential (remidner)

DEFINITION: De Rham differential d : A*M — A*T1M is an R-linear
map satisfying the following conditions.
* For each f € AOM = C>®M, d(f) € A1M is equal to the differential

df € /\1M. - * (Leibnitz rule) d(a Ab) = da Ab+ (=1))a A db for any
a € NNM,be NM.
* d?=0.

REMARK: A map on a graded algebra which satisfies the Leibnitz rule above
iIs called an odd derivation.

REMARK: The following two lemmas are needed to prove uniqueness of de
Rham differential.

LEMMA: Let A = @Ai be a graded algebra, B C A a set of multiplicative
generators, and D1,D> : A— A two odd derivations which are equal on B.
Then Dy =Dy. =

LEMMA: AN*M is generated by C*°M and d(C*°M).

Proof: By definition, A*M is generated by AOM = C°M and ALl However,
d(C>®M) generate A1), as shown above. =
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De Rham differential: uniqueness and existence (reminder)

THEOREM:
De Rham differential is uniquely determined by these axioms.

Proof: De Rham differential is an odd derivation. Its value on C°°M is defined
by the first axiom. On d(C>®°M) de Rham differential valishes, because d2 = 0.
u

DEFINITION: Let tq,...,t, be coordinate functions on R", «; coordinate
monomials, and a 1=} f;a;. Define d(a) :=33;3; %dtj N ;.
J

EXERCISE:
Check that d satisfies the properties of de Rham differential.

COROLLARY: De Rham differential exists on any smooth manifold.

Proof: Locally, de Rham differential d exists, as follows from the construction
above. Since d is unique, it is compatible with restrictions. This means that
d defines a sheaf morphism. Restricting this sheaf morphism to global
sections, we obtain de Rham differential on A*M. =

’
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Superalgebras

DEFINITION: Let A* = @,czA" be a graded algebra over a field. It is
called graded commutative, or supercommutative, if ab = (—1)%Yba for all
a€ A be A,

EXAMPLE: Grassmann algebra A*V is clearly supercommutative.

DEFINITION: Let A* be a graded commutative algebra, and D : A* — A*T?
be a map which shifts grading by 2. It is called a graded derivation, if
D(ab) = D(a)b+ (—1)YaD(b), for each a € AJ.

REMARK: If 7 is even, graded derivation is a usual derivation. If it is even,
it an odd derivation.

DEFINITION: Let M be a smooth manifold, and X € T'M a vector field.
Consider an operation of convolution with a vector field iy : A/M — A1 M,
mapping an i-form « to an (i — 1)-form vq,...,v,_1 — a(X,v1,...,v;_1)

EXERCISE: Prove that i:x is an odd derivation.
8
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Supercommutator

DEFINITION: Let A* be a graded vector space, and E : A* —s A*t?
F . A* —s A*tJ operators shifting the grading by 1,7. Define the super-
commutator {E,F} := EF — (—1)YFE.

DEFINITION: An endomorphism of a graded vector space which shifts grad-
ing by 7 is called even if 7 is even, and odd otherwise.

EXERCISE: Prove that the supercommutator satisfies graded Jacobi iden-
tity,

(E{F,G}} = ({E,F},G} + (-1)!F{F {E,G}}

where £ and £ are 0 if E, F are even, and 1 otherwise.

REMARK: There is a simple mnemonic rule which allows one to remember
a superidentity, if you know the commutative analogue. Each time when in
commutative case two letters £, F are exchanged, In supercommuta-
tive case one needs to multiply by (—1)&%,

EXERCISE: Prove that a supercommutator of superderivations is again
a superderivation.
9
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Pullback of a differential form

DEFINITION: Let M -2 N be a morphism of smooth manifolds, and
a € A'N be a differential form. Consider an -form ¢*a taking value

0] p(my (Dp(x1), .. Do (7))
©

on x1,....,x; € IT;mM. It is called the pullback of a. If M — N is a closed
embedding, the form ¢*« is called the restriction of o« to M — N.

LEMMA: (*) Let W1,Ws: A*N — A*M be two maps which satisfy graded
Leibnitz identity, supercommutes with de Rham differential, and satisfy Wq|gcops =
\U2|CooM. Then Vi = Ws,,

Proof: The algebra A*M is generated multiplicatively by C*°M and d(C*°M);
restrictions of W, to these two spaces are equal. =

CLAIM: Pullback commutes with the de Rham differential.

Proof: Let di,d> : A*N — A*T1M be the maps di = ¢*od and dy = d o ©*.
These maps satisfy the Leibnitz identity, and they are equal on C°°M.
The super-commutator § := {d;,d} is equal to do ¢* od, it commutes with d,
and equal 0 on functions. By Lemma (*), § = 0. Then d; supercommutes
with d. Applying Lemma (*) again, we obtain that d{ = d>. =

10
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Lie derivative

DEFINITION: Let B be a smooth manifold, and v € T'M a vector field. An
endomorphism Liey : A*M — A*M, preserving the grading is called a Lie
derivative along v if it satisfies the following conditions.
(1) On functions Liey is equal to a derivative along v. (2) [Liey,d] = 0.
(3) Liey is a derivation of the de Rham algebra.

REMARK: The algebra A*(M) is generated by C®°M = AO(M) and d(C>®M).
The restriction Liey |y, is determined by the first axiom. On d(C*°M) is
also determined because Liey(df) = d(Liey f). Therefore, Lie, is uniquely
defined by these axioms.

EXERCISE: Prove that {d,{d,E}} = 0 for each E € End(A*M).

THEOREM: (Cartan’s formula) Let i, be a convolution with a vector field,
iv(n) =n(v,-, -, ...,-) Then {d,i,} is equal to the Lie derivative along v.

Proof: {d,{d,iv}} = O by the lemma above. A supercommutator of two
graded derivations is a graded derivation. Finally, {d,iy,} acts on functions as
iw(df) = (v, df). =

11
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Flow of diffeomorphisms

DEFINITION: Let f: M X [a,b] — M be a smooth map such that for all
t € [a,b] the restriction f; := f‘Mx{t} . M — M is a diffeomorphism. Then f
is called a flow of diffeomorphisms.

CLAIM: Let V; be a flow of diffeomorphisms, f € C®°M, and V,*(f)(x) :
f(Vi(x)). Consider the map jtvﬂt — . C°®°M — C°°M, with c(zitwt (f) =
(Vc—l)*dvt| —cf. Then f— (V,~ 1)* V7 °f is a derivation (that is, a vector
field).

Proof: 4V (fg) = V() 4Virg + LV fVi*(g) by the Leignitz rule, giving
d

d d
(V, 1)”‘% Vi*(fg) = f(‘/;_l)*a‘/%*g + g(Vt_l)*th*f

DEFINITION: The vector field %Vﬂtzc is called a vector field tangent to
a flow of diffeomorphisms V; at t = c.

12
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Lie derivative and a flow of diffeomorphisms

DEFINITION: Let v+ be a vector field on M, smoothly depending on the
“time parameter” t € [a,b], and V : M X [a,b] — M a flow of diffeomorphisms
which satisfies %Vt = v; for each t € [a,b], and Vj =1Id. Then V} is called an
exponent of w;.

CLAIM: Exponent of a vector field is unique; it exists when M is compact.
This statement is called “Picard-Lindelof theorem” or *“uniqueness and
existence of solutions of ordinary differential equations’.

PROPOSITION: Let v; be a time-dependent vector field, t € [a,b], and V;
its exponent. For any a € A*M, consider V,*a as a A*M-valued function of ¢.
Then Lieyy(a) = &|i=o(V; ).

Proof: By definition of differential, Liey, f = (df,vg), hence Liey, f = %H:OV;*(J").
The operator Liey,; commutes with de Rham differential, because Lie, =
wd + diy. The map %Vt commutes with de Rham differential, because it
is a derivative of a pullback. Now Lemma (*) is applied to show that
Liey, o = %h:o(vt*oz). u
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Homotopy operators

DEFINITION: A complex is a sequence of vector spaces and homomor-
. d d d d

phisms ... — C;_1 — C; — Cijp1 — ...

satisfying d2 = 0. Homomorphism (Cx,d) — (C.,d) of complexes is a se-

quence of homomorphism C; — C,g commuting with the differentials.

DEFINITION: An element ¢ € C; is called closed if c € kerd and exact if

ceimd. Cohomology of a complex is a quotient ‘frenrg.

REMARK: A homomorphism of complexes induces a natural homomorphism
of cohomology groups.

DEFINITION: Let (Ck,d), (C.,d) be a complex. Homotopy is a sequence
of maps h: Cx — C,_;. Two homomorphisms f,g : (Cs,d) — (Cy,d) are
called homotopy equivalent if f — g = {h,d} for some homotopy operator h.

CLAIM: Let f,f': (Ck,d) — (CL,d) be homotopy equivalent maps of com-
plexes. Then f and f’ induce the same maps on cohomology.

Proof. Step 1: Let g := f — f’. It would suffice to prove that g induces 0
on cohomology.
14
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Lie derivative and homotopy

CLAIM: Let f,f': (Ck,d) — (CL,d) be homotopy equivalent maps of com-
plexes. Then f and f’ induce the same maps on cohomology.

Proof. Step 1: Let g := f — f’. It would suffice to prove that g induces O
on cohomology.

Step 2: Let ¢ € C; be a closed element. Then g(c¢) = dh(c) 4+ hd(c) = dh(c)
exact. m

DEFINITION: Let d be de Rham differential. A form in kerd is called closed,
a form in imd is called exact. Since d2 = 0, any exact form is closed. The
group of i-th de Rham cohomology of M, denoted H*(M), is a quotient

of a space of closed i-forms by the exact: H*(M) = &<

REMARK: Let v be a vector field, and Lie, : AN*M — A*M be the corre-
sponding Lie derivative. Then Lie, commutes with the de Rham differ-
ential, and acts trivially on the de Rham cohomology.

Proof: Liey = 1,d + di, maps closed forms to exact. m
15
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Poincaré lemma

DEFINITION: An open subset U C R" is called starlike if for any € U the
interval [0, x] belongs to U.

THEOREM: (Poicaré lemma) Let U C R™ be a starlike subset. Then
H*(U) =0 for i > 0.

REMARK: The proof would follow if we construct a vector field » such
that Lie- is invertible on AN*(M): LieR = Id. Indeed, for any closed form «
we would have a = Liep Ra = dipRa + ipRda = dipRa, hence any closed form
IS exact.

Then Poincaré lemma is implied by the following statement.

PROPOSITION: Let U C R™ be a starlike subset, tq,...,t, coordinate func-
tions, and r = Zt-i the radial vector field. Then Liez is invertible on

' tdt;
Ai(U) for i > 0.

16
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Radial vector field on starlike sets

PROPOSITION: Let U C R™ be a starlike subset, tq,...,t, coordinate func-
tions, and r = th'% the radial vector field. Then Liez is invertible on

AY(U) for i > 0.

Proof. Step 1: Let ¢t be the coordinate function on a real line, f(t) € C*°R
a smooth function, and v := t% a vector field. Define R(f)(t) := fol %’\t)aﬂ.
Then this integral converges whenever f(0) = 0, and satisfies Liey, R(f) = f.
Indeed,

L) ot f(At) [t f(z)
/O A\ = / S d(th) = /O d(2),

A 0 z
hence Liey R(f) = 12 = f(¢).

Step 2: Consider a function f € C°R" satisfying f(0) = 0, and z =
(z1,...,zn) € R™. Then

o) |

R(D@) = [ 10

converges, and satisfies LiezR(f) = f.

17
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Radial vector field on starlike sets (2)

Step 3: Consider a differential form a € A?, and let hyx — Ax be the homo-
thety with coefficient \ € [0,1]. Define

1
R(a) := /O A~L1R% (@)d.
Since hi(a) = 0 for A = 0, this integral converges. It remains to prove that

LierR = Id.

Step 4: Let a be a coordinate monomial, a = dt;; Adt;, A ... Adt; . Clearly,

Liex(T~1a) = 0, where T = t;,t;,...t;, . Since hi(fa) = h3(Tf)T 'a, we have

R(fa) = R(Tf)T1a for any function f € C>®M. This gives

LiezR(fa) = LiezR(TH)T ta=TfT 1o = fa.
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