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Geometry 4: Germs and sheaves

Rules: Exam problems would be similar to ones marked with ! sign. It is recommended to solve all unmarked and

!-problems or to find the solution online. It’s better to do it in order starting from the beginning, because the solutions

are often contained in previous problems. The problems with * are harder, and ** are very hard; don’t be disappointed

if you can’t solve them, but feel free to try. Have fun!

4.1 Direct limit

Definition 4.1. Commutative diagram of vector spaces is given by the following
data. First, there is a directed graph (graph with arrows). For each vertex of this
graph (also called a diagram) one gives a vector space, and each arrow corresponds to a
homomorphism of the associated vector spaces. These homomorphism are compatible,
in the following way. Whenever there exist two ways of going from one vertex to another,
the compositions of the corresponding arrows are equal.

Remark 4.1. A neighbourhood of a subset X ⊂M is an open subset containing X.

Exercise 4.1. Let (M,F) be a space ringed by a sheaf of functions, x ∈M a point, {Ui}
the set of all neighbourhoods of x. Consider a diagram with the set of vertices indexed
by {Ui}, and arrows from Ui to Uj corresponding to inclusions Uj ↪→ Ui. Prove that the
space of sections F(Ui) with homomorphisms given by restrictions form a commutative
diagram.

Definition 4.2. Let C be a commutative diagram of vector spaces A,B – vector spaces
corresponding to two vertices of a diagram, and a ∈ A, b ∈ B elements of these vector
spaces. Write a ∼ b if a and b are mapped to the same element d ∈ D by a composition
of arrows from C. Let ∼ be an equivalence relation generated by such a ∼ b.

Exercise 4.2. a. Let A
φ−→ B be a diagram of two spaces and one arrow. Prove

that b ∼ b′ is equivalent to b = b′ for each b, b′ ∈ B.

b. Let A
φ−→ B, A−→ 0 be a diagram of three spaces, with φ injective. Prove that

for each b, b′ ∈ B, b ∼ b′ is equivalent to b− b′ ∈ imφ.

Definition 4.3. Let {Ci} be a set of vector spaces associated with the vertices of a
commutative diagram C, and E ⊂

⊕
iCi a subspace generated by the vectors (x − y),

where x ∼ y. A quotient
⊕

iCi/E is called a direct limit of a diagram {Ci}. The
same notion is also called colimit and inductive limit. Direct limit is denoted lim

→
.

Exercise 4.3. Let C1 −→ C2 −→ C3 −→ ... be a diagram with all arrows injective. Prove
that lim

→
Ci is a union of all Ci.
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Exercise 4.4. Let C1 −→ C2 −→ C3 −→ ...−→ Cn be a diagram. Prove that lim
→
Ci =

Cn.

Exercise 4.5. Find an example of a diagram C1 −→ C2 −→ C3 −→ ... where all spaces
Ci are non-zero, and the colimit lim

→
Ci vanishes.

Exercise 4.6 (*). Find an example of a diagram C1 −→ C2 −→ C3 −→ ... where all
spaces Ci are non-zero, all arrows are also non-zero, and the colimit lim

→
Ci vanishes.

Definition 4.4. A diagram C is called filtered if for any two vertices Ci, Cj, there
exists a third vertex Ck, and sequences of arrows leading from Ci to Ck and from Cj to
Ck.

Exercise 4.7. Let C be a commutative diagram of vector spaces Ci, with all Ci equipped
with a ring structure, and all arrows ring homomorphisms. Suppose that the diagram
C is filtered. Prove that lim

→
Ci is a ring, equipped with natural ring homomorphisms

Ci −→ lim
→
Ci.

4.2 A ring of germs of a sheaf of functions

Definition 4.5. Let M,F be a ringed space, x ∈ M its point, and {Ui} the set of all
its neighbourhoods. Consider a commutative diagram with vertices indexed by {Ui},
and arrows from Ui to Uj corresponding to inclusions Uj ↪→ Ui. For each vertex Ui we
take a vector space of sections F(Ui), and for each arrow the corresponding restriction
map. The direct limit of this diagram is called the ring of germs of the sheaf F in
x.

Remark 4.2. This limit is indeed a ring, as follows from the previous exercise.

Remark 4.3. As a special case of this definition, we obtain rings of germs of smooth
functions, real analytic functions, continuous, Ci and so on.

Exercise 4.8. Let F be a sheaf of functions on a manifold such that all its germs are
zero. Prove that F is a zero sheaf.

Definition 4.6. A constant sheaf RM is a sheaf of functions which are constant on
each connected U ⊂M .

Exercise 4.9. Prove that a ring of germs of a constant sheaf at each point is R.

Exercise 4.10 (*). Let F be a sheaf of R-valued functions on M , such that all its
germs are isomorphic to R. Prove that it is constant.
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Definition 4.7. An ideal in a ring R is an abelian subgroup I ( R, such that for all
x ∈ R, a ∈ I, the product xa belongs to I.

Remark 4.4. A quotient space R/I is a ring (prove this). Also, for any ring homomor-
phism, its kernel is an ideal.

Definition 4.8. A maximal ideal is an ideal I ⊂ R, such that for any other ideal
I ′ ) I, I ′ 3 1.

Exercise 4.11. Show that any ideal is contained in a maximal ideal (use Zorn’s lemma).1

Exercise 4.12. Show that an ideal I ⊂ R is maximal if and only if the quotient R/I
is a field.

Exercise 4.13 (*). Find all maximal ideals in the ring of smooth functions on a com-
pact manifold.

Definition 4.9. A ring is called local if it contains only one maximal ideal.

Exercise 4.14. Prove that a ring of rational numbers m
n

, where m,n are integer, and
n odd, is local. Find its quotient by the maximal ideal.

Exercise 4.15. Let F be a ring of rational functions (functions P
Q

, where P and Q ∈
C[t1, ..., tn] are polynomials) without a pole in 0. Show that this ring is local. Find its
quotient by a maximal ideal.

Exercise 4.16 (!). Are the following rings local?

a. The ring of germs of smooth functions.

b. The ring of germs of polynomial functions on Rn.

c. The ring of germs of functions of differentiability class Ci, i > 0.

d. The ring of germs of continuous functions.

e. The ring of germs of real analytic functions on Rn.

Exercise 4.17. Show that a ring with a maximal ideal I is local iff each element r /∈ I
is invertible.

Definition 4.10. Zero divisors in a ring are non-zero elements r1, r2, saisfying r1r2 =
0. Nilpotent is r ∈ R such that rn = 0 for some n.

1You are not required to prove Zorn’s lemma in this exercise.
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Exercise 4.18. Find whether the following rings have zero divisors.

a. The ring of germs of smooth functions.

b. The ring of germs of polynomial functions.

c. The ring of germs of continuous functions.

Definition 4.11. A continuous function f on Rn is called piecewise polynomial if Rn

is represented as a union of polyhedra, and on each of these polyhedra, f is polynomial.

Exercise 4.19. Let F – a sheaf of piecewise polynomial functions on R, S – a ring of
its germs at 0.

a. Find out whether S is a local ring.

b. Show that S is isomorphic to R[t1, t2]/(t1t2 = 0).

Exercise 4.20 (!). Let R be a local ring, m its maximal ideal, and K(R) :=
⋂
im

i.
Prove that it is an ideal. Find whether this ideal is zero for

a. The ring of germs of smooth functions.

b. The ring of germs of real analytic functions.

c. The ring of germs of continuous functions.

Exercise 4.21 (*). Let R = k[t1, ..., tn] be a ring of polynomials over a field, and I ⊂ R
an ideal.2 Prove that

⋂
i I

i = 0.

Exercise 4.22. Let R be a ring of germs of smooth functions in x, m its maximal ideal,
and K(R) :=

⋂
im

i. Prove that for all f ∈ K(R), all derivatives of f in zero (of any
order) vanish.

Exercise 4.23. Let x1, ..., xn be coordinates on Rn, and f a function with all derivatives
of any order vanishing. Show that f

(
∑

i x
2
i )

p is continuous for any p > 0.

Exercise 4.24 (!). Under assumptions of the previous exercise, prove that the function
f∑
i x

2
i

is smooth.

Exercise 4.25 (!). Let R be a ring of germs of smooth functions in x ∈ Rn, K(R) :=⋂
im

i the ideal defined above. Prove that K(R) is an ideal of functions with vanishing
derivatives of any order at x.

2The ideals in R are tacitly assumed to be 6= R.
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Hint. Use the previous exercise.

Exercise 4.26 (*). Let R/K(R) be the ring defined above.

a. Are there non-zero nilpotents in R/K(R)?

b. Are there zero divisors in R/K(R)?

4.3 Soft sheaves

Definition 4.12. Let (M,F) be a topological space ringed by a sheaf of functions, and
X ⊂ M its subset. Consider a diagram indexed by open subsets Ui ⊂ M containing
X, with arrows corresponding to inclusions Uj ⊂ Ui, and associate with each Ui the
corresponding section space F(Ui). A direct limit of this diagram is called the ring of
germs of F in X, and denoted as F(X).

Exercise 4.27 (*). Let (M,C∞M) be a manifold ringed by a sheaf of smooth func-
tions, and X ⊂M . Suppose that the space of germs of C∞M in X is a local ring. Prove
that X is a point.

Definition 4.13. A ring of functions F on M is called soft if for any closed subset
X ⊂M , the natural map from the space of global sections F(M) to the space of germs
F(X) is surjective.

Exercise 4.28. Show that the sheaf of real analytic functions on Rn is not soft.

Exercise 4.29. Show that a constant sheaf on a manifold is not soft.3

Exercise 4.30. Find a topological space M and a sheaf of functions F on it such that
the restriction map from F(M) to the space of germs of F in a point is always surjective,
but the sheaf F is not soft.

Exercise 4.31. Let N,N ′ ⊂ M be two closed subsets of a metric space, N ∩ N ′ = ∅.
Prove that there exist non-intersecting neighbourhoods U ⊃ N , U ′ ⊃ N ′.

Exercise 4.32 (!). Let M be a manifold admitting a partition of unity, N ⊂ M a
closed subset, and U ⊃ N its neighbourhood. Prove that M has a locally finite cover
{Ui} such that all Ui which intersect N are contained in U .

Hint. Prove that M admits a metric, and use the previous exercise.

Definition 4.14. Support of a function f is the set of all points where f 6= 0. A
function is called supported in U if its support is contained in U .

3All manifolds are tacitly assumed to be of positive dimension.
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Exercise 4.33. Let U ⊂ M be an open subset of a manifold, U ′ b M an open subset
satisfying Ū ′ ⊂ U , and f a smooth function on U with support in U ′. Prove that f can
be extended to a smooth function on M .

Exercise 4.34 (*). Let M be a manifold admitting a partition of unity. Prove that
the sheaf of smooth functions on M is soft.

Hint. Given a smooth function f on U ⊃ N , find a cover {Ui}, i ∈ I as in previous
exercise, and let {ψi} be a subordinate partition of unity. Let A ⊂ I be the set of indices
α ∈ I such that Uα ∩ N 6= 0. Prove that the function f ′ :=

∑
α∈A ψαf is supported in

U ′ b U , can be extended smoothly to the whole M , and equal f on N .

Definition 4.15. Let f ∈ F(M) be a section of a sheaf F on M . Support of f is the
set of all points x ∈M such that there is no neighbourhood U 3 x such that f

∣∣
U

= 0.

Exercise 4.35. Prove that support of any section is closed.

Definition 4.16. A sheaf F on M is called fine if for any locally finite cover {Uα} of an
open set U ⊂M indexed by α ∈ I and any section f ∈ F(U) there exists a collection of
sections fα ∈ F(U) indexed by the same set I such that a support of any fα is contained
in Uα, and

∑
I fα = f .

Remark 4.5. Essentially the fine sheaves are sheaves which admit partition of unity.

Exercise 4.36 (*). Let M be a smooth manifold. Prove that the sheaf of smooth
functions is fine.

Exercise 4.37 (*). Let M be a smooth manifold. Prove that the sheaf of smooth
functions is soft.

Hint. Use the previous exercise.

Exercise 4.38 (**). Let M be a metrizable topological space. Prove that the sheaf of
continuous functions is fine.

Exercise 4.39 (**). Let M be a metrizable topological space. Find a soft sheaf on M
which is not fine.

Exercise 4.40 (**). Let F be a soft sheaf of functions, with the rings of germs local
at all points. Prove that F is fine, or find a counterexample.

Exercise 4.41 (**). Let M be a metrizable topological space. Prove that any fine
sheaf on M is soft.
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