Geometry 7: Vector bundles

Rules: Exam problems would be similar to ones marked with ! sign. It is recommended to solve all unmarked and !-problems or to find the solution online. It's better to do it in order starting from the beginning, because the solutions are often contained in previous problems. The problems with * are harder, and ** are very hard; don't be disappointed if you can't solve them, but feel free to try. Have fun!

7.1 Tensor product

Definition 7.1. Let V, V' be *R*-modules, *W* a free abelian group generated by $v \otimes v'$, with $v \in V, v' \in V'$, and $W_1 \subset W$ a subgroup generated by combinations $rv \otimes v' - v \otimes rv', (v_1 + v_2) \otimes v' - v_1 \otimes v' - v_2 \otimes v'$ and $v \otimes (v'_1 + v'_2) - v \otimes v'_1 - v \otimes v'_2$. Define the tensor product $V \otimes_R V'$ as a quotient group W/W_1 .

Exercise 7.1. Show that $r \cdot v \otimes v' \mapsto (rv) \otimes v'$ defines an *R*-module structure on $V \otimes_R V'$.

Exercise 7.2. Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z}) = 0$.

Exercise 7.3 (*). Find a non-zero *R*-module *V* such that $V \otimes_R V = 0$.

Exercise 7.4. Let I_1, I_2 be ideals in R. Prove that $(R/I_1) \otimes_R (R/I_2) = R/(I_1 + I_2)$, where $I_1 + I_2$ is an ideal generated by linear combinations I_1, I_2 .

Exercise 7.5. Prove that a tensor product of free *R*-modules is free.

Exercise 7.6. Let \mathcal{F} be a sheaf of rings, and \mathcal{B}_1 and \mathcal{B}_2 sheaves of locally free (M, \mathcal{F}) -modules. Prove that

$$U \longrightarrow \mathcal{B}_1(U) \otimes_{\mathcal{F}(U)} \mathcal{B}_2(U)$$

is also a sheaf of modules.

Exercise 7.7 (**). Is the last statement true without the assumption of local triviality?

Definition 7.2. Tensor product of vector bundles is a tensor product of the corresponding sheaves of modules.

Remark 7.1. In a similar way one defines exterior powers and symmetric powers of a bundle.

Exercise 7.8. Let \mathcal{B}_1 and \mathcal{B}_2 be locally free sheaves of $C^{\infty}M$ -modules, and $\mathcal{B}_1 \otimes_{C^{\infty}M} \mathcal{B}_2$ their tensor product. Show that the fiber $\mathcal{B}_1 \otimes_{C^{\infty}M} \mathcal{B}_2$ in x is naturally identified with a tensor product of the fibers:

$$\left(\mathcal{B}_1\otimes_{C^{\infty}M}\mathcal{B}_2\right)\Big|_x\cong\mathcal{B}_1\Big|_x\otimes_{\mathbb{R}}\mathcal{B}_2\Big|_x.$$

Issued 16.11.2013

Exercise 7.9. Let V be an R-module, and $\operatorname{Hom}_R(V, R)$ the space of R-linear homomorphisms from V to R. Prove that the action $r \cdot h(\ldots) \mapsto rh(\ldots)$ gives a structure of R-module on $\operatorname{Hom}_R(V, R)$. Prove that $\operatorname{Hom}_R(R^n, R)$ with R-module structure defined this way is isomorphic (non-canonically) to a free module R^n .

Definition 7.3. Let V be an R-module. A dual R-module V^* is $\operatorname{Hom}_R(V, R)$ with the R-module structure defined above.

Exercise 7.10. Consider \mathbb{Q}/Z as a Z-module. Prove that $(\mathbb{Q}/Z)^* = 0$.

Exercise 7.11. Prove that $\operatorname{Hom}_{\mathbb{Z}}(Q, \mathbb{Z}) = 0$.

Exercise 7.12 (*). Let $R = C^{\infty}(\mathbb{R})_0$ be a ring of germs of smooth functions at 0, and K an ideal of functions vanishing in 0 with all derivatives. Prove that $(R/K)^* := \operatorname{Hom}_R(R/K, R) = 0$, or disprove it.

Exercise 7.13 (*). Same question when $R = C^{\infty}(\mathbb{R}^n)_0$.

Exercise 7.14 (!). Let \mathcal{B} be a vector bundle, that is, a locally free sheaf of $C^{\infty}M$ -modules, and Tot $\mathcal{B} \xrightarrow{\pi} M$ its total space. Define $\mathcal{B}^*(U)$ as a space of smooth functions on $\pi^{-1}(U)$ linear in the fibers of π .

- a. Show that the natural restriction map $\mathcal{B}^*(U) \longrightarrow \mathcal{B}^*(V)$ defines a sheaf \mathcal{B}^* .
- b. Show that this sheaf is locally trivial.
- c. (!) Show that $\mathcal{B}^*(U)$ is a dual $C^{\infty}(U)$ -module to $\mathcal{B}(U)$.

Definition 7.4. Let \mathcal{B} be a vector bundle, and \mathcal{B}^* a locally trivial sheaf of $C^{\infty}M$ modules defined above. It is called **the dual bundle** to \mathcal{B} .

Exercise 7.15. Prove that the fiber $\mathcal{B}^*\Big|_x$ is a vector space dual to $\mathcal{B}\Big|_x$.

Exercise 7.16. Let \mathcal{B} be a non-trivial vector bundle. Prove that \mathcal{B}^* is also non-trivial.

Definition 7.5. Bilinear form on a bundle \mathcal{B} is a section of $(\mathcal{B} \otimes \mathcal{B})^*$. A symmetric bilinear form on \mathcal{B} is called **positive definite** if it gives a positive definite form on all fibers of \mathcal{B} . Symmetric positive definite form is also called **a metric**. A skew-symmetric bilinear form on \mathcal{B} is called **non-degenerate** if it is non-degenerate on all fibers of \mathcal{B} .

Exercise 7.17 (!). Let \mathcal{B} be a vector bundle on a metrizable manifold M. Prove that \mathcal{B} admits a metric.

Hint. Construct the metric locally, and use partition of unity.

Exercise 7.18. Construct a 2-dimensional vector bundle which does not admit a non-degenerate skew-symmetric bilinear form.

Exercise 7.19 (**). Let M be a simply connected manifold, and B a 2n-dimensional vector bundle. Prove that B admits a non-degenerate skew-symmetric bilinear form, or find a counterexample.

Exercise 7.20 (*). Find a non-trivial 3-dimensional bundle \mathcal{B} such that its exterior square $\Lambda^2 \mathcal{B}$ is trivial.

Exercise 7.21 (*). Find a 2-dimensional bundle which does not admit a non-degenerate bilinear symmetric form of signature (1, 1).

7.2 Smooth morphisms of vector bundles and subbundles

Definition 7.6. Let $\mathcal{B}, \mathcal{B}'$ be sheaves on M. A sheaf morphism from \mathcal{B} to \mathcal{B}' is a collection of homomorphisms $\mathcal{B}(U) \longrightarrow \mathcal{B}'(U)$, defined for each open subset $U \subset M$, and compatible with the restriction maps:

Remark 7.2. Morphisms of sheaves of modules are defined in the same way, but in this case the maps $\mathcal{B}(U) \longrightarrow \mathcal{B}'(U)$ should be compatible with the module structure.

Definition 7.7. A sheaf morphism is called **injective** if it is injective on germs and **surjective**, if it is surjective on germs.

Exercise 7.22. Let $\mathcal{B} \xrightarrow{\phi} \mathcal{B}'$ be an injective morphism of sheaves on M. Prove that ϕ induces an injective map $\mathcal{B}(M) \longrightarrow \mathcal{B}'(M)$ on the spaces of global sections.

Exercise 7.23 (*). Find an example of a surjective sheaf morphism which is not surjective on global sections.

Definition 7.8. Let $\mathcal{B} \xrightarrow{\phi} \mathcal{B}'$ be a morphism of locally free sheaves of $C^{\infty}M$ -modules. It is called a smooth morphism, or a morphism of vector bundles if on each of the germ spaces ϕ has free kernel and free cokernel.

Definition 7.9. Let \mathcal{F} be a locally free sheaf of $C^{\infty}M$ -modules, and \mathcal{F}_x its space of germs in x. Denote the quotient $\mathcal{F}_x/\mathfrak{m}_x\mathcal{F}_x$ by $\mathcal{F}\Big|_x$. This space is called **the fiber** of \mathcal{F} in x. A morphism of sheaves induces a linear map on each of its fibers.

Exercise 7.24 (!). Find an example of an injective morphism of locally free $C^{\infty}M$ -modules which is not injective in some fiber.

Exercise 7.25 (*). Prove that a surjective morphism of locally free sheaves of $C^{\infty}M$ -modules is a smooth morphism of vector bundles, in the sense of the above definition.

Exercise 7.26. Let $\mathcal{B} \longrightarrow \mathcal{B}_1$ be a smooth morphism of vector bundles on M.

- a. Prove that the corresponding map Ψ of total spaces is a homomorphism of relative vector spaces over M.
- b. Prove that Ψ has no critical points.

Definition 7.10. A subbundle $\mathcal{B}_1 \subset \mathcal{B}$ is an image of an injective morphism of vector bundles.

Exercise 7.27. Let $\mathcal{B}_1 \subset \mathcal{B}$ be a subbundle. Prove that the quotient $\mathcal{B}/\mathcal{B}_1$ is also a vector bundle.

Exercise 7.28 (!). Let $\mathcal{B}_1 \xrightarrow{\phi} \mathcal{B}_2$ be a morphism of vector bundles. Prove that the image of ϕ is a subbundle in \mathcal{B}_2 , and its kernel is a subbundle in \mathcal{B}_1 .

Definition 7.11. Direct sum of vector bundles is a direct sum of corresponding sheaves.

Exercise 7.29. Prove that a total space of a direct sum of vector bundles $\mathcal{B} \oplus \mathcal{B}'$ is homeomorphic to Tot $\mathcal{B} \times_M$ Tot \mathcal{B}' .

Exercise 7.30. Let \mathcal{B} be a vector bundle equipped with a metric (that is, a positive definite symmetric form), and $\mathcal{B}_1 \subset \mathcal{B}$ a subbundle. Consider a subset $\operatorname{Tot} \mathcal{B}_1^{\perp} \subset \operatorname{Tot} \mathcal{B}$, consisting of all $v \in \mathcal{B}|_x$ orthogonal to $\mathcal{B}_1|_x \subset \mathcal{B}|_x$. Prove that $\operatorname{Tot} \mathcal{B}_1^{\perp}$ is a total space of a subbundle, denoted as $\mathcal{B}_1^{\perp} \subset \mathcal{B}$.

Definition 7.12. A subbundle $\mathcal{B}_1^{\perp} \subset \mathcal{B}$ is called **orthogonal complement** of \mathcal{B} to $\mathcal{B}_1 \subset \mathcal{B}$.

Exercise 7.31. Let $\mathcal{B}_1 \subset \mathcal{B}$ be a sub-bundle. Prove that \mathcal{B} is isomorphic to a direct sum of \mathcal{B}_1 and another bundle.

Hint. Find a metric on \mathcal{B} and use the previous exercise.

Remark 7.3. In this situation, it is said that \mathcal{B}_1 is a direct summand of \mathcal{B} .