Geometry 9: de Rham differential

Rules: Exam problems would be similar to ones marked with ! sign. It is recommended to solve all unmarked and !-problems or to find the solution online. It's better to do it in order starting from the beginning, because the solutions are often contained in previous problems. The problems with * are harder, and ** are very hard; don't be disappointed if you can't solve them, but feel free to try. Have fun!

9.1 Kähler differentials

Definition 9.1. Let R be a ring over a field k, and V an R-module. A k-linear map D: $R \longrightarrow V$ is called **a derivation** if it satisfies **the Leibnitz identity** D(ab) = aD(b) + bD(a). The space of derivations from R to V is denoted $\text{Der}_k(R, V)$.

Exercise 9.1. Consider an action of R on $\text{Der}_k(R, V)$, with rd acting as $a \longrightarrow rd(a)$. Prove that this defines a structure of R-module on $\text{Der}_k(R, V)$.

Exercise 9.2. Let [K : k] be a finite extension of a field of characteristic 0, and V a vector space over K. Prove that $\text{Der}_k(K, V) = 0$.

Exercise 9.3 (!). Let M be a smooth manifold, $x \in M$ a point, $R = C^{\infty}M$, and $\mathfrak{m}_x \subset R$ the maximal ideal of x. Consider an R-module $V := R/\mathfrak{m}_x$. Find $\dim_{\mathbb{R}} \operatorname{Der}_R(R, V)$.

Exercise 9.4 ().** Let $R = C^0 M$ be a ring of continuous functions on a manifold M, and V an R-module of dimension 1 over \mathbb{R} . Find a non-trivial derivation $\nu \in \text{Der}_k(R, V)$, or prove that it does not exist.

Definition 9.2. Let R be a ring over a field k. Define an R-module $\Omega_k^1 R$, sometimes denoted simply as $\Omega^1 R$, with the following generators and relations. The generators of $\Omega_k^1 R$ are indexed by elements of R; for each $a \in R$, the corresponding generator of $\Omega_k^1 R$ is denoted da. Relations in $\Omega_k^1 R$ are generated by expressions d(ab) = adb + bda, for all $a, b \in R$, and $d\lambda = 0$ for each $\lambda \in k$. Then $\Omega_k^1 R$ is called **the module of Kähler differentials** of R.

Exercise 9.5. Prove that the natural map $R \longrightarrow \Omega_k^1 R$, with $a \mapsto da$ is a derivation.

Exercise 9.6. Let R be a quotient of $k[r_1, ..., r_k]$ by an ideal. Prove that $\Omega_k^1 R$ is generated as an R-module by $dr_1, ..., dr_k$.

Exercise 9.7 (!). Prove that $\text{Der}_k(R) = \text{Hom}_R(\Omega_k^1 R, R)$.

Exercise 9.8. Let V be an R-module, and $D \in \text{Der}_k(R, V)$ a derivation. Prove that there exists a unique R-module homomorphism ϕ_D : $\Omega_k^1 R \longrightarrow V$ making the following diagram commutative.

Remark 9.1. This property is often taken as a definition of $\Omega_k^1 R$.

Exercise 9.9 (!). Let $R = k[t_1, ..., t_n]$ be a polynomial ring over a field of characteristic 0. Prove that $\Omega_k^1 R$ is a free *R*-module generated by $dt_1, dt_2, ..., dt_n$.

Exercise 9.10 (*). Let $I \subset R$ be an ideal. Construct an exact sequence

$$I/I^2 \longrightarrow \Omega^1(R) \otimes_R R/I \longrightarrow \Omega^1(R/I) \longrightarrow 0.$$

Exercise 9.11. Let $R \xrightarrow{\phi} R'$ be a ring homomorphism. Consider $\Omega^1 R'$ as an *R*-module, using the action $r, a \longrightarrow \phi(r)a$.

- a. Prove that there exists an R-module homomorphism $\Omega^1 R \longrightarrow \Omega^1 R'$, mapping dr to $d\phi(r)$.
- b. Prove that it is unique.

Definition 9.3. In this case, we say that the homomorphism $\Omega^1 R \longrightarrow \Omega^1 R'$ is induced by ϕ .

Exercise 9.12 (*). Let R be a ring of continuous functions on a manifold, and \mathfrak{m}_x a maximal ideal of a point. Prove that $\mathfrak{m}_x \Omega^1 R = \Omega^1 R$.

9.2 Cotangent bundle

Definition 9.4. Let A, B be R-modules, and $\nu : A \times B \longrightarrow R$ a bilinear pairing. It is called **non-degenerate** if for each $a \in A$ there exists $b \in B$ such that $\nu(a, b) \neq 0$, and for each $b \in B$ there exists $a \in A$ such that $\nu(a, b) \neq 0$

Exercise 9.13. Let A, B be vector spaces over k, and $\nu : A \times B \longrightarrow k$ a non-degenerate pairing. Prove that A is isomorphic to B^* , or find a counterexample

- a. When A, B are finite-dimensional.
- b. When A, B are infinite-dimensional.

Definition 9.5. Let V be an R-module. A dual R-module $\operatorname{Hom}_R(V, R)$ is denoted R^* .

Exercise 9.14. Let V be an R-module. Consider the natural pairing $V \times V^* \longrightarrow R$. Prove that it is non-degenerate, or find a counterexample, in the following cases:

- a. when R is a field, and V a (possibly infinite-dimensional) vector space
- b. (!) when the natural map $V \longrightarrow V^{**}$ is injective
- c. when V is a free R-module
- d. (*) when R is a ring which has no zero divisors.

Exercise 9.15 (*). Let A, B be finitely-generated R-modules, and $\nu : A \times B \longrightarrow R$ a non-degenerate pairing. Prove that A is isomorphic to B^* , or find a counterexample.

Exercise 9.16 (!). Let A be a free, finitely generated R-module, and $\nu : A \times B \longrightarrow R$ a non-degenerate pairing. Prove that B is also free, and isomorphic to A^* .

Definition 9.6. Let A, B be finitely generated R-modules, and $\nu : A \times B \longrightarrow R$ a bilinear pairing. Define **the annihilator of** ν **in** B as a submodule consisting of all elements $b \in B$ for which the homomorphism $\nu(\cdot, b) : A \longrightarrow R$ vanishes.

Definition 9.7. Let M be a smooth manifold, $R := C^{\infty}M$ the ring of smooth functions, and ν : Der $(R) \times \Omega^1 R \longrightarrow R$ the pairing constructed in Exercise 9.7. Consider its annihilator $K \subset \Omega^1 R$. Define **the cotangent bundle** as $\Lambda^1 M := \Omega^1 R/K$. For the purpose of this definition, $\Lambda^1 M$ is a $C^{\infty}M$ -module.

Exercise 9.17. Let $R := C^{\infty} \mathbb{R}^n$, and $t_1, ..., t_n \in R$ be coordinate functions. Consider an element in $\Lambda^1 \mathbb{R}^n$, written as $P = \sum_{i=1}^n P_i dt_i$, let $Q = \sum_{i=1}^n Q_i \frac{d}{dt_i} \in \text{Der}_k(R)$ – be a vector field, and ν : $\text{Der}(R) \times \Lambda^1 \mathbb{R}^n \longrightarrow R$ the natural pairing. Prove that $\nu(P,Q) = \sum_i P_i Q_i$.

Exercise 9.18 (!). In these assumptions, prove that $\Lambda^1 R$ is a free \mathbb{R} -module, generated by $dt_1, ..., dt_n$.

Hint. Prove that $Der(R) = Hom_R(\Omega^1 R, R)$, and Der(R) is a free *R*-module. Use exercise 9.16.

Exercise 9.19. Let A, B be finitely-generated projective R-modules, and $\nu : A \times B \longrightarrow R$ a non-degenerate pairing. Prove that $B \cong A^*$.

Exercise 9.20 (!). Let M be a smooth, metrizable manifold. Prove that

$$\Lambda^1 M = \operatorname{Hom}_{C^{\infty} M}(\operatorname{Der}(C^{\infty} M), C^{\infty} M).$$

Hint. Use the previous exercise and apply the Serre-Swan theorem.

Exercise 9.21 (*). Let K be the kernel of the natural projection

$$\Omega^1(C^\infty M) \longrightarrow \Lambda^1 M.$$

Prove that $\mathfrak{m}_x K = K$ for each maximal ideal of a point $x \in M$.

Exercise 9.22 (**). Show that K is non-empty.

9.3 De Rham algebra

Definition 9.8. Let M be a smooth manifold. A bundle of differential *i*-forms on M is the bundle $\Lambda^i T^* M$ of antisymmetric *i*-forms on TM. It is denoted $\Lambda^i M$.

Definition 9.9. Let $\alpha \in (V^*)^{\otimes i}$ and $\alpha \in (V^*)^{\otimes j}$ be polylinear forms on V. Define the **tensor multiplication** $\alpha \otimes \beta$ as

$$\alpha \otimes \beta(x_1, ..., x_{i+j}) := \alpha(x_1, ..., x_j)\beta(x_{i+1}, ..., x_{i+j}).$$

Exercise 9.23. Let $\bigotimes_k T^*M \xrightarrow{\Pi} \Lambda^k M$ be the antisymmetrization map,

$$\Pi(\alpha)(x_1,...,x_n) := \frac{1}{n!} \sum_{\sigma \in \mathsf{Sym}_n} (-1)^{\sigma} \alpha(x_{\sigma_1},x_{\sigma_2},...,x_{\sigma_n}).$$

Define the "exterior multiplication" \wedge : $\Lambda^{i}M \times \Lambda^{j}M \longrightarrow \Lambda^{i+j}M$ as $\alpha \wedge \beta := \Pi(\alpha \otimes \beta)$, where $\alpha \otimes \beta$ is a section $\Lambda^{i}M \otimes \Lambda^{j}M \subset \bigotimes_{i+j} T^{*}M$ obtained as their tensor multiplication. Prove that this operation is associative and satisfies $\alpha \wedge \beta = (-1)^{ij}\beta \wedge \alpha$.

Definition 9.10. The algebra $\Lambda^* M := \bigoplus_i \Lambda^i M$ with the multiplicative structure defined above is called **the de Rham algebra** of a manifold.

Exercise 9.24 (*). Let M be an oriented manifold. Prove that all bundles $\Lambda^{i}M$ are oriented, or find a counterexample.

Exercise 9.25. Prove that de Rham algebra is multiplicatively generated by $C^{\infty}M = \Lambda^0 M$ and $d(C^{\infty}) \subset \Lambda^1 M$.

Exercise 9.26. Prove that a derivation on an algebra is uniquely determined by its values on any set of multiplicative generators of this algebra.

Definition 9.11. De Rham differential $d: \Lambda^* M \longrightarrow \Lambda^{*+1} M$ is an \mathbb{R} -linear map satisfying the following conditions.

- (i) For each $f \in \Lambda^0 M = C^{\infty} M$, $d(f) \in \Lambda^1 M$ is equal to the image of the Kähler differential $df \in \Omega^1 M$ in $\Lambda^1 M = \Omega^1 M / K$.
- (ii) (Leibnitz rule) $d(a \wedge b) = da \wedge b + (-1)^j a \wedge db$ for any $a \in \Lambda^i M, b \in \Lambda^j M$.
- (iii) $d^2 = 0$.

Exercise 9.27 (!). Prove that de Rham differential is defined uniquely by these axioms.

Hint. Use the previous exercise.

Exercise 9.28. Let $t_1, ..., t_n$ be coordinate functions on \mathbb{R}^n , and $\alpha \in \Lambda^* \mathbb{R}^n$ a monomial obtained as a product of several dt_i ,

$$\alpha = dt_{i_1} \wedge dt_{i_2} \wedge \dots \wedge dt_{i_k},$$

 $i_1 < i_2 < ... < i_k$ (such a monomial is called a coordinate monomial).

- a. Prove that $\Lambda^* \mathbb{R}^n$ is a trivial bundle, and coordinate monomials are free generators of $\Lambda^* \mathbb{R}^n$.
- b. Show that the de Rham differential, if it exists, satisfies $d(f\alpha) = \sum_i \frac{df}{dt_i} dt_i \wedge \alpha$ for any $f \in C^{\infty} \mathbb{R}^n$.
- c. Prove that this formula defines the de Rham differential on $\Lambda^* \mathbb{R}^n$ correctly.
- **Exercise 9.29.** a. Prove that de Rham differential $d: \Lambda^* M \longrightarrow \Lambda^{*+1} M$ commutes with restrictions to open subsets.
 - b. Show that de Rham differential (if it exists) defines a sheaf morphism.

Hint. Use uniqueness of de Rham differential.

Exercise 9.30 (!). Prove that de Rham differential exists on any manifold.

Hint. Locally, de Rham differential is constructed in exercise 9.28. To go from local to global, use the previous exercise, and apply the sheaf axioms.

Exercise 9.31 (*). Let R be a ring over a field, and $\Omega^i R := \Lambda^i_R \Omega^1 R$ an exterior algebra generated by Kähler differentials. Prove that there exists the de Rham differential $d: \Omega^* R \longrightarrow \Omega^{*+1} R$ satisfying the axioms above.