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Geometry 9: de Rham differential

Rules: Exam problems would be similar to ones marked with ! sign. It is recommended to solve all unmarked

and !-problems or to find the solution online. It’s better to do it in order starting from the beginning, because the

solutions are often contained in previous problems. The problems with * are harder, and ** are very hard; don’t be

disappointed if you can’t solve them, but feel free to try. Have fun!

9.1 Kähler differentials

Definition 9.1. Let R be a ring over a field k, and V an R-module. A k-linear map D :
R−→ V is called a derivation if it satisfies the Leibnitz identity D(ab) = aD(b)+bD(a).
The space of derivations from R to V is denoted Derk(R, V ).

Exercise 9.1. Consider an action of R on Derk(R, V ), with rd acting as a−→ rd(a). Prove
that this defines a structure of R-module on Derk(R, V ).

Exercise 9.2. Let [K : k] be a finite extension of a field of characteristic 0, and V a vector
space over K. Prove that Derk(K,V ) = 0.

Exercise 9.3 (!). Let M be a smooth manifold, x ∈ M a point, R = C∞M , and mx ⊂ R
the maximal ideal of x. Consider an R-module V := R/mx. Find dimR DerR(R, V ).

Exercise 9.4 (**). Let R = C0M be a ring of continuous functions on a manifold M , and
V an R-module of dimension 1 over R. Find a non-trivial derivation ν ∈ Derk(R, V ), or
prove that it does not exist.

Definition 9.2. Let R be a ring over a field k. Define an R-module Ω1
kR, sometimes denoted

simply as Ω1R, with the following generators and relations. The generators of Ω1
kR are

indexed by elements of R; for each a ∈ R, the corresponding generator of Ω1
kR is denoted

da. Relations in Ω1
kR are generated by expressions d(ab) = adb + bda, for all a, b ∈ R, and

dλ = 0 for each λ ∈ k. Then Ω1
kR is called the module of Kähler differentials of R.

Exercise 9.5. Prove that the natural map R−→ Ω1
kR, with a 7→ da is a derivation.

Exercise 9.6. Let R be a quotient of k[r1, ..., rk] by an ideal. Prove that Ω1
kR is generated

as an R-module by dr1, ..., drk.

Exercise 9.7 (!). Prove that Derk(R) = HomR(Ω1
kR,R).

Exercise 9.8. Let V be an R-module, and D ∈ Derk(R, V ) a derivation. Prove that there
exists a unique R-module homomorphism φD : Ω1

kR−→ V making the following diagram
commutative.

R
d - Ω1

kR

V

φD

?

D

-

Remark 9.1. This property is often taken as a definition of Ω1
kR.

Exercise 9.9 (!). Let R = k[t1, ..., tn] be a polynomial ring over a field of characteristic 0.
Prove that Ω1

kR is a free R-module generated by dt1, dt2, ..., dtn.
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Exercise 9.10 (*). Let I ⊂ R be an ideal. Construct an exact sequence

I/I2 −→ Ω1(R)⊗R R/I −→ Ω1(R/I)−→ 0.

Exercise 9.11. Let R
φ−→ R′ be a ring homomorphism. Consider Ω1R′ as an R-module,

using the action r, a−→ φ(r)a.

a. Prove that there exists an R-module homomorphism Ω1R−→ Ω1R′, mapping dr to
dφ(r).

b. Prove that it is unique.

Definition 9.3. In this case, we say that the homomorphism Ω1R−→ Ω1R′ is induced by
φ.

Exercise 9.12 (*). Let R be a ring of continuous functions on a manifold, and mx a maximal
ideal of a point. Prove that mxΩ1R = Ω1R.

9.2 Cotangent bundle

Definition 9.4. Let A,B be R-modules, and ν : A×B −→R a bilinear pairing. It is called
non-degenerate if for each a ∈ A there exists b ∈ B such that ν(a, b) 6= 0, and for each
b ∈ B there exists a ∈ A such that ν(a, b) 6= 0

Exercise 9.13. Let A,B be vector spaces over k, and ν : A × B −→ k a non-degenerate
pairing. Prove that A is isomorphic to B∗, or find a counterexample

a. When A,B are finite-dimensional.

b. When A,B are infinite-dimensional.

Definition 9.5. Let V be an R-module. A dual R-module HomR(V,R) is denoted R∗.

Exercise 9.14. Let V be an R-module. Consider the natural pairing V × V ∗ −→R. Prove
that it is non-degenerate, or find a counterexample, in the following cases:

a. when R is a field, and V a (possibly infinite-dimensional) vector space

b. (!) when the natural map V −→ V ∗∗ is injective

c. when V is a free R-module

d. (*) when R is a ring which has no zero divisors.

Exercise 9.15 (*). Let A,B be finitely-generated R-modules, and ν : A×B −→R a non-
degenerate pairing. Prove that A is isomorphic to B∗, or find a counterexample.

Exercise 9.16 (!). Let A be a free, finitely generated R-module, and ν : A × B −→R a
non-degenerate pairing. Prove that B is also free, and isomorphic to A∗.

Definition 9.6. Let A, B be finitely generated R-modules, and ν : A×B −→R a bilinear
pairing. Define the annihilator of ν in B as a submodule consisting of all elements b ∈ B
for which the homomorphism ν(·, b) : A−→R vanishes.
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Definition 9.7. Let M be a smooth manifold, R := C∞M the ring of smooth finctions, and
ν : Der(R) × Ω1R−→R the pairing constructed in Exercise 9.7. Consider its annihilator
K ⊂ Ω1R. Define the cotangent bundle as Λ1M := Ω1R/K. For the purpose of this
definition, Λ1M is a C∞M -module.

Exercise 9.17. Let R := C∞Rn, and t1, ..., tn ∈ R be coordinate functions. Consider an
element in Λ1Rn, written as P =

∑n
i=1 Pidti, let Q =

∑n
i=1Qi

d
dti
∈ Derk(R) – be a vector

field, and ν : Der(R)× Λ1Rn −→R the natural pairing. Prove that ν(P,Q) =
∑
i PiQi.

Exercise 9.18 (!). In these assumptions, prove that Λ1R is a free R-module, generated by
dt1, ..., dtn.

Hint. Prove that Der(R) = HomR(Ω1R,R), and Der(R) is a free R-module. Use exercise
9.16.

Exercise 9.19. Let A,B be finitely-generated projective R-modules, and ν : A× B −→R
a non-degenerate pairing. Prove that B ∼= A∗.

Exercise 9.20 (!). Let M be a smooth, metrizable manifold. Prove that

Λ1M = HomC∞M (Der(C∞M), C∞M).

Hint. Use the previous exercise and apply the Serre-Swan theorem.

Exercise 9.21 (*). Let K be the kernel of the natural projection

Ω1(C∞M)−→ Λ1M.

Prove that mxK = K for each maximal ideal of a point x ∈M .

Exercise 9.22 (**). Show that K is non-empty.

9.3 De Rham algebra

Definition 9.8. Let M be a smooth manifold. A bundle of differential i-forms on M
is the bundle ΛiT ∗M of antisymmetric i-forms on TM . It is denoted ΛiM .

Definition 9.9. Let α ∈ (V ∗)⊗i and α ∈ (V ∗)⊗j be polylinear forms on V . Define the
tensor multiplication α⊗ β as

α⊗ β(x1, ..., xi+j) := α(x1, ..., xj)β(xi+1, ..., xi+j).

Exercise 9.23. Let
⊗

k T
∗M

Π−→ ΛkM be the antisymmetrization map,

Π(α)(x1, ..., xn) :=
1

n!

∑
σ∈Symn

(−1)σα(xσ1
, xσ2

, ..., xσn
).

Define the “exterior multiplication” ∧ : ΛiM×ΛjM −→ Λi+jM as α∧β := Π(α⊗β), where
α⊗ β is a section ΛiM ⊗ ΛjM ⊂

⊗
i+j T

∗M obtained as their tensor multiplication. Prove

that this operation is associative and satisfies α ∧ β = (−1)ijβ ∧ α.

Definition 9.10. The algebra Λ∗M := ⊕iΛiM with the multiplicative structure defined
above is called the de Rham algebra of a manifold.
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Exercise 9.24 (*). Let M be an oriented manifold. Prove that all bundles ΛiM are ori-
ented, or find a counterexample.

Exercise 9.25. Prove that de Rham algebra is multiplicatively generated by C∞M = Λ0M
and d(C∞) ⊂ Λ1M .

Exercise 9.26. Prove that a derivation on an algebra is uniquely determined by its values
on any set of multiplicative generators of this algebra.

Definition 9.11. De Rham differential d : Λ∗M −→ Λ∗+1M is an R-linear map satisfy-
ing the following conditions.

(i) For each f ∈ Λ0M = C∞M , d(f) ∈ Λ1M is equal to the image of the Kähler differential
df ∈ Ω1M in Λ1M = Ω1M/K.

(ii) (Leibnitz rule) d(a ∧ b) = da ∧ b+ (−1)ja ∧ db for any a ∈ ΛiM, b ∈ ΛjM .

(iii) d2 = 0.

Exercise 9.27 (!). Prove that de Rham differential is defined uniquely by these axioms.

Hint. Use the previous exercise.

Exercise 9.28. Let t1, ..., tn be coordinate functions on Rn, and α ∈ Λ∗Rn a monomial
obtained as a product of several dti,

α = dti1 ∧ dti2 ∧ ... ∧ dtik ,

i1 < i2 < ... < ik (such a monomial is called a coordinate monomial).

a. Prove that Λ∗Rn is a trivial bundle, and coordinate monomials are free generators of
Λ∗Rn.

b. Show that the de Rham differential, if it exists, satisfies d(fα) =
∑
i
df
dti
dti ∧ α for any

f ∈ C∞Rn.

c. Prove that this formula defines the de Rham differential on Λ∗Rn correctly.

Exercise 9.29. a. Prove that de Rham differential d : Λ∗M −→ Λ∗+1M commutes with
restrictions to open subsets.

b. Show that de Rham differential (if it exists) defines a sheaf morphism.

Hint. Use uniqueness of de Rham differential.

Exercise 9.30 (!). Prove that de Rham differential exists on any manifold.

Hint. Locally, de Rham differential is constructed in exercise 9.28. To go from local to
global, use the previous exercise, and apply the sheaf axioms.

Exercise 9.31 (*). Let R be a ring over a field, and ΩiR := ΛiRΩ1R an exterior alge-
bra generated by Kähler differentials. Prove that there exists the de Rham differential
d : Ω∗R−→ Ω∗+1R satisfying the axioms above.
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