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MATH-F-420, Handout 1: Grassmann algebra

Rules: Exam problems would be similar to ones marked with ! sign. It is recommended to solve all unmarked
and !-problems or to find the solution online. It’s better to do it in order starting from the beginning, because the
solutions are often contained in previous problems. The problems with * are harder, and ** are very hard; don’t be

disappointed if you can’t solve them, but feel free to try. Have fun!

1.1 Algebras defined by generators and relations

Definition 1.1. Let V be a vector space. Free or tensor algebra generated by V is an
algebra T'(V) := @, V®® with multiplivation given by z -y = 2 ® y. The zero component
V®0 is identified with the ground field. Therefore, T'(V) is an algebra with unit.

Exercise 1.1. Let V' be a vector space over the ground field k, called “the space of gener-
ators”, and W C T'(V') another space called “the space of relations”. Consider the quotient

space A 1= ——~V)___ where T(V)WT(V) is a subspace of T(V) generated by vectors vwv’,

= TWVWT(V)®
where w € W, v,v" € T(V). Assume that A is non-zero. Prove that A is equipped with a
natural structure of an algebra with unit, in such a way that the quotient map T(V) — A

is an homomorphism.

Definition 1.2. In assumptions of the previous exercise, let v; be a basis in V', and w; basis
in W. Each relation w; = 0 can be written as a non-commutative tensorial expression

E Qiyyoyig Liy Tig - =0
T

where I runs through a set of multi-indices 41,...,14,, for various n, and oy, .. ;, € k are

n

scalar coefficients. The algebra A is called algebra with generators v; and relations

Definition 1.3. Let V be a 3-dimensional space over R, with basis I, J, K, and H an algebra
generated by V with relations I2 = J2 = K2 =I-J-K = —1. Then H is called quaternion
algebra.

Exercise 1.2. Prove that quaternion algebra is a 4-dimensional algebra with division.

Hint. Use the same argument which was used to show that the complex numbers have
division.

Exercise 1.3. a. Prove that any algebra A with unit can be defined by generators and
relations.

b. (*) Prove that when A is finite-dimensional, this can be done in such a way that the
space of generators V' and the space of relations W are finitely-dimensional.

Definition 1.4. An algebra A defined by the space of generators V' and the space of rela-
tions W is called finitely generated if V can be chosen finitely-dimensional, and finitely

represented if both W and V can be chosen finite-dimensional.

Exercise 1.4.  a. Prove that the matrix algebra Mat(R?) is finitely represented.

b. Prove that the algebra k[t,t~1] of Laurent polynomials is finitely represented.

Exercise 1.5 (*). Find a finitely generated algebra which is not finitely represented.
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Definition 1.5. Let V be a vector space with a bilinear symmetric form g: V®V — R.
Consider the algebra C1(V') generated by V, with relations

v1 - V2 + v v = g(v1,v2) - 1,

for all v1,vo € V. This algebra is called Clifford algebra over k.
Exercise 1.6. Describe all Clifford algebras over R for dimV =1, 2.

Exercise 1.7. Prove that the following algebras are isomorphic to a Clifford algebra over R
for an appropriate space V' with bilinear symmetric form g, and find this V' and g.

a. C
b. () H
c. () Mat(2,R)
d. (*) Mat(4,R).

Exercise 1.8 (*). Let n = dim V. Find dim C1(V).

1.2 Grassmann algebra

Definition 1.6. An algebra A is called graded if A is represented as A = @ A?, where
i € Z, and the product satisfies A* - A7 C A*J. Instead @ A’ one often writes A*, where
* denotes all indices together. Some of the spaces A’ can be zero, but the ground field is
always assumed to belong in A°.

Example: The tensor algebra T'(V) and the polynomial algebra are obviously graded.

Definition 1.7. A subspace W C A* of a graded algebra is called graded if W is a direct
sum of components W?* C A*.

Exercise 1.9. Let W C T(V) be a graded subspace. Prove that the algebra generated by
V' with relation space W is also graded.

Definition 1.8. Let V' be a vector space, and W C V ® V a graded subspace, generated by
vectors t @y +y ®x and x ® x, for all z,y € V. A graded algebra defined by the generator
space V and the relation space W is called Grassmann algebra, or exterior algebra, and
denoted A*(V'). The space A*(V) is called i-th exterior power of V, and the multiplication
in A*(V) — exterior multiplication. Exterior multiplication is denoted A.

Remark 1.1. Grassmann algebra is a Clifford algebra with the symmetric form g = 0.
Exercise 1.10. Prove that A'V is isomorphic to V.

Exercise 1.11. Let V be finitely dimensional. Prove that A%(V)* is isomorphic to the space
of bilinear skew-symmetric forms on V.

Exercise 1.12. Consider a subalgebra €, , A?(V) in a Grassmann algebra. Prove that
this subalgebra is commutative.

Definition 1.9. An element of Grassmann algebra is called even if it lies in @, A% (V)

and odd if it lies in @, A* (V). For an even or odd z € A*(V), we define a number &
called parity of x. The parity of x is 1 for even x and -1 for odd.
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Exercise 1.13 (!). Prove that z Ay = (—=1)%y A z.
Exercise 1.14 (*). Find all n € A%(V) such that n? = 0.

Exercise 1.15. Let x1,2,... be a basis in V = A'V. Show that the set of vectors z;, A
Ziy ANXig A -+, forall 43 <ig < iz < ... is a basis in A*(V).

Exercise 1.16 (!). Let V be a d-dimensional vector space. Find dim A*(V'). Prove that
dim A4V = 1.

Definition 1.10. The space A?V is called the space of determinant vectors on V.

Exercise 1.17. Let V be a d-dimensional vector space, x1,Zs,...,2q its basis, and det :=
X1 ATaAx3 - - -Axq the corresponding determinant vector in A%V For a given permutation [ =
(1,92, ...,19q) consider a vector I(det) := x;, Ax;, Az, - Ax;,. Prove that I(det) = £ det.
Prove that this correspondence gives a homomorphism o from the group Sy of permutations
to {#1}. Prove that this homomorphism maps a product of odd number of transpositions to
-1 and a product of even number of transpositions to 1.

Definition 1.11. The number o(I) is called signature of a permitation I.

Definition 1.12. Let n € V®? be an element in the d-th tensor power of V. The group Sy
acts on V®? by permutation of tensor factors. Define Alt(n) as

Alt(n) = > o(1)I(n)

: IeSy

This operation is called antisymmetrization. We say that a vector € V®? is totally
antisymmetric if n = Alt(n).

Exercise 1.18. Let n € V®¢ be a vector which satisfies n = > 1es, 1(n). Prove that
I(n) = n for any permutation I € Sy.

Exercise 1.19 (!). Let n € V¥4 be a totally antisymmetric tensor. Prove that I(n) = o(I)n
for any permutation I € Sy.

Exercise 1.20. Prove that Alt(Alt(n)) = Alt(n) for any n € V®4,

Exercise 1.21. Let W C V ® V be the space of relations of Grassmann algebra defined
above. Prove that Alt(T'(V) - W -T(V)) = 0.

Remark 1.2. From this exercise it follows that there exists a natural map from A*(V) to
the space im Alt of totally antisymmetric tensors.

Exercise 1.22 (!). Prove that the homomorphism A?(V) — im Alt defined above is bijec-
tive.

Exercise 1.23 (!). In the previous exercise, we have identified A*(V) and the space of
totally antisymmetric tensors. This defines multiplicative structure on the space of totally
antisymmetric tensors. Prove that this multiplicative structure can be written as follows.
Given totally antisymmetric tensors a, 8 € T(V), to find a A B € imAlt = A*(V), we
muptiply « and 8 in T(V) and apply Alt.
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Remark 1.3. From now on, we identify A*(V') and the space of totally antisymmetric ten-
sors, and consider A*(V') as a subspace in the tensor algebra.

Exercise 1.24. Let Vi, V5 be vector spaces. Prove that A*(V4 @ Va) and A*(V1) @ A*(V3)
are isomorphic as graded vector spaces.

Exercise 1.25. Prove that dim A*(V) = 24mV,
Exercise 1.26. Consider the map
V@A (V)L ALY,
defined by z @ n — = A n. For any given 7, this defines a linear map L, : V — A" (V).
a. (*)  Prove that for all n # 0 one has dimker L,, < i.
b. (*)  Suppose that dimker L,, = i. Prove that in this case n = 1 Aza A --- A x; for

some x1,...,x; € V.

1.3 Determinant

Exercise 1.27. Let W be a one-dimensional vector space over k. Prove that End W is
naturally isomorphic to k.

Exercise 1.28. Let A € End(V) be a linear endomorphism of a vector space V. Prove that
the action of A on V = A'V is uniquely extended to a multiplicative endomorphism of the
algebra A*V. Prove that this homomorphism preserves the grading.

Definition 1.13. Let V be a d-dimensional vector space and A € End(V). Consider
the induced endomorphism of the space of determinant vectors A4(V) denoted as det A €
End(A4(V)). Since A%(V) is 1-dimensional, the space End(A%(V)) is naturally identified
with k. This allows to consider det A as a number, that is, an element of k. This number is
called determinant of A.

Exercise 1.29. Let V be a vector space, and z1,...,zq € V. Prove that z1AzoA---Axqg # 0
if and only if these vectors are linearly independent.

Exercise 1.30 (!). Prove that A € End(V) has positive-dimensional kernel if and only if
det A = 0.

Hint. Use the previous exercise.

Exercise 1.31 (!). Prove that det defines a homomorphism from the group GL(V) of in-
vertible matrices to the multiplicative group k* of the ground field.

Exercise 1.32 (!). Let V, V' be vector spaces, A, A’ their endomorphisms. Then A & A’
defines an endomorphism of V' & V’. Prove that det(A & A’) = det Adet A'.

Hint. Use the isomorphism A*(V & V') = A*(V) @ A*(V').
Exercise 1.33 (*). Let V be a vector space equipped with a non-degenerate bilinear form,

that is, an isomorphism g : V — V* and A a linear operator preserving g. Prove that
det A = £1.
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