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Topological manifolds

REMARK: Manifolds can be smooth (of a given “differentiability class”),

real analytic, or topological (continuous).

DEFINITION: Topological manifold is a topological space which is locally

homeomorphic to an open ball in Rn.

EXERCISE: Show that a group of homeomorphisms acts on a con-

nected manifold transitively.

DEFINITION: Such a topological space is called homogeneous.

Open problem: (Busemann)

Characterize manifolds among other homogeneous topological spaces.

Now we whall proceed to the definition of smooth manifolds.
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Banach fixed point theorem

LEMMA: (Banach fixed point theorem/“contraction principle”)

Let U ⊂ Rn be a closed subset, and f : U −→ U a map which satisfies

|f(x) − f(y)| < k|x − y|, where k < 1 is a real number (such a map is called

“contraction”). Then f has a fixed point, which is unique.

Proof. Step 1: Uniqueness is clear because for two fixed points x1 and x2

|f(x1)− f(x2)| = |x1 − x2| < k|x1 − x2|.

Step 2: Existence follows because the sequence x0 = x, x1 = f(x), x2 =

f(f(x)), ... satisfies |xi − xi+1| 6 k|xi−1 − xi| which gives |xn − xn+1| < kna,

where a = |x− f(x)|. Then |xn − xn+m| <
∑m
i=0 k

n+ia 6 kn 1
1−ka, hence {xi} is

a Cauchy sequence, and converges to a limit y, which is unique.

Step 3: f(y) is a limit of a sequence f(x0), f(x1), ...f(xi), ... which gives

y = f(y).

EXERCISE: Find a counterexample to this statement when U is open

and not closed.
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Differentiable maps

DEFINITION: Let U, V ⊂ Rn be open subsets. An affine map is a sum of
linear map α and a constant map. Its linear part is α.

DEFINITION: Let U ⊂ Rm, V ⊂ Rn be open subsets. A map f : U −→ V is
called differentiable if it can be approximated by an affine one at any point:
that is, for any x ∈ U , there exists an affine map ϕx : Rm −→ Rn such that

lim
x1→x

|f(x1)− ϕ(x1)|
|x− x1|

= 0

DEFINITION: Differential, or derivative of a differentiable map f :
U −→ V is the linear part of ϕ.

DEFINITION: Diffeomorphism is a differentiable map f which is invertible,
and such that f−1 is also differentiable. A map f : U −→ V is a local
diffeomorphism if each point x ∈ U has an open neighbourhood U1 3 x such
that f : U1 −→ f(U1) is a diffeomorphism.

REMARK: Chain rule says that a composition of two differentiable functions
is differentiable, and its differential is composition of their differentials.

REMARK: Chain rule implies that differential of a diffeomorphism is
invertible. Converse is also true:
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Inverse function theorem

THEOREM: Let U, V ⊂ Rn be open subsets, and f : U −→ V a differentiable
map. Suppose that the differential of f is everywhere invertible. Then f is
locally a diffeomorphism.

Proof. Step 1: Let x ∈ U . Without restricting generality, we may assume
that x = 0, U = Br(0) is an open ball of radius r, and in U one has
|f(x1)−ϕ(x1)|
|x−x1|

< 1/2. Replacing f with −f ◦ (D0f)−1, where D0f is differential
of f in 0, we may assume also that D0f = − Id.

Step 2: In these assumptions, |f(x) +x| < 1/2|x|, hence ψs(x) := f(x) +x− s
is a contraction. This map maps Br/2(0) to itself when s < r/4. By Banach
fixed point theorem, ψs(x) = x has a unique fixed point xs, which is
obtained as a solution of the equation f(x) + x− s = x, or, equivalently,
f(x) = s. Denote the map s−→ xs by g.

Step 3: By construction, fg = Id. Applying the chain rule again, we find
that g is also differentiable.

REMARK: Usually in this course, diffeomorphisms would be assumed smooth
(infinitely differentiable). A smooth version of this result is left as an ex-
ercise.
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Critical points and critical values

DEFINITION: Let U ⊂ Rm, V ⊂ Rn be open subsets, and f : U −→ V a
smooth function. A point x ∈ U is a critical point of f if the differential
Dxf : Rm −→ Rn is not surjective. Critical value is an image of a critical
point. Regular value is a point of V which is not a critical value.

THEOREM: (Sard’s theorem) The set of critical values of f is of
measure 0 in V .

REMARK: We leave this theorem without a proof. We won’t use it much.

DEFINITION: A subset M ⊂ Rn is an m-dimensional smooth submanifold
if for each x ∈ M there exists an open in Rn neighbourhood U 3 x and a
diffeomorphism from U to an open ball B ⊂ Rn which maps U ∩ M to an
intersection B ∩Rm of B and an m-dimensional linear subspace.

REMARK: Clearly, a smooth submanifold is a (topological) manifold.

THEOREM: Let U ⊂ Rm, V ⊂ Rn be open subsets, f : U −→ V a smooth
function, and y ∈ V a regular value of f . Then f−1(y) is a smooth sub-
manifold of U.
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Preimage of a regular value

THEOREM: Let U ⊂ Rm, V ⊂ Rn be open subsets, f : U −→ V a smooth

function, and y ∈ V a regular value of f . Then f−1(y) is a smooth sub-

manifold of U.

Proof:: Let x ∈ U be a point in f−1(y). It suffices to prove that x has a

neighbourhood diffeomorphic to an open ball B, such that f−1(y) corresponds

to a linear subspace in B. Without restricting generality, we may assume that

y = 0 and x = 0.

The differential D0f : Rn −→ Rm is surjective. Let L := kerD0f , and let

A : Rn −→ L be any map which acts on L as identity. Then D0f ⊕ A :

Rn −→ Rm ⊕ L is an isomorphism of vector spaces. Therefore, Ψ : f ⊕ A
mapping x1 to f(x1)⊕A(x1) is a diffeomorphism in a neighbourhood of

x. However, f−1(0) = Ψ−1(0 ⊕ L). We have constructed a diffeomorphism

of a neighbourhood of x with an open ball mapping f−10) to 0⊕ L.
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Preimage of a regular value: corollaries

COROLLARY: Let f1, ..., fm be smooth functions on U ⊂ Rn such that

the differentials dfi are linearly independent everywhere. Then the set of

solutions of equations f1(z) = f2(z) = ... = fm(z) = 0 is a smooth (n−m)-

dimensional submanifold in U.

DEFINITION: Smooth hypersurface is a closed codimension 1 submani-

fold.

EXERCISE: Prove that a smooth hypersurface in U is always obtained

as a solution of an equation f(z) = 0, where 0 is a regular value of a

function f : U −→ R.
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Applications of Sard’s theorem: Brower fixed point theorem

EXERCISE: Prove that any connected 1-dimensional manifold is diffeomor-

phic to a circle or a line. Prove that any compact 1-dimensional manifold

with boundary is diffeomorphic to a closed interval or a circle.

THEOREM: Any smooth map f : B −→B from a closed ball to itself

has a fixed point.

Proof. Step 1: Suppose that f has no fixed point. For each x ∈ B, take

a ray from f(x) in direction of x, and let y be the point of its intersection

with the boundary ∂B. Let Ψ(x) := y. The map Ψ is smooth and Ψ|∂B is an

identity.

Step 2: Let y be a regular value of Ψ. Then Ψ−1(y) is a closed (hence,

compact) 1-dimensional submanifold of B. The boundary of this manifold is

its intersection with ∂B, hence it has only one point on a boundary. However,

any compact 1-dimensional manifold has an even number of boundary

points, as follows from the Exercise above.
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Abstract manifolds: charts and atlases

DEFINITION: An open cover of a topological space X is a family of open
sets {Ui} such that

⋃
iUi = X. A cover {Vi} is a refinement of a cover {Ui}

if every Vi is contained in some Ui.

REMARK: Any two covers {Ui}, {Vi} of a topological space admit a
common refinement {Ui ∩ Vj}.

DEFINITION: Let M be a topological manifold. A cover {Ui} of M is an
atlas if for every Ui, we have a map ϕi : Ui → Rn giving a homeomorphism of
Ui with an open subset in Rn. In this case, one defines the transition maps

Φij : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

DEFINITION: A function R−→ R is of differentiability class Ci if it is i
times differentiable, and its i-th derivative is continuous. A map Rn −→ Rm is
of differentiability class Ci if all its coordinate components are. A smooth
function/map is a function/map of class C∞ =

⋂
Ci.

DEFINITION: An atlas is smooth if all transition maps are smooth (of class
C∞, i.e., infinitely differentiable), smooth of class Ci if all transition functions
are of differentiability class Ci, and real analytic if all transition maps admit
a Taylor expansion at each point.
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Smooth structures

DEFINITION: A refinement of an atlas is a refinement of the corresponding

cover Vi ⊂ Ui equipped with the maps ϕi : Vi → Rn that are the restrictions

of ϕi : Ui → Rn. Two atlases (Ui, ϕi) and (Ui, ψi) of class C∞ or Ci (with the

same cover) are equivalent in this class if, for all i, the map ψi ◦ϕ−1
i defined

on the corresponding open subset in Rn belongs to the mentioned class.

Two arbitrary atlases are equivalent if the corresponding covers possess a

common refinement.

DEFINITION: A smooth structure on a manifold (of class C∞ or Ci) is an

atlas of class C∞ or Ci considered up to the above equivalence. A smooth

manifold is a topological manifold equipped with a smooth structure.

DEFINITION: A smooth function on a manifold M is a function f whose

restriction to the chart (Ui, ϕi) gives a smooth function f ◦ϕ−1
i : ϕi(Ui)−→ R

for each open subset ϕi(Ui) ⊂ Rn.
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Smooth maps and isomorphisms

From now on, I shall identify the charts Ui with the corresponding subsets

of Rn, and forget the differentiability class.

DEFINITION: A smooth map of U ⊂ Rn to a manifold N is a map

f : U −→N such that for each chart Ui ⊂ N , the restriction f
∣∣∣f−1(Ui)

:

f−1(Ui)−→ Ui is smooth with respect to coordinates on Ui. A map of man-

ifolds f : M −→N is smooth if for any chart Vi on M , the restriction

f
∣∣∣Vi : Vi −→N is smooth as a map of Vi ⊂ Rn to N .

DEFINITION: An isomorphism of smooth manifolds is a bijective smooth

map f : M −→N such that f−1 is also smooth.
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Sheaves

DEFINITION: A presheaf of functions on a topological space M is a

collection of subrings F(U) ⊂ C(U) in the ring C(U) of all functions on U , for

each open subset U ⊂ M , such that the restriction of every γ ∈ F(U) to an

open subset U1 ⊂ U belongs to F(U1).

DEFINITION: A presheaf of functions F is called a sheaf of functions if

these subrings satisfy the following condition. Let {Ui} be a cover of an open

subset U ⊂ M (possibly infinite) and fi ∈ F(Ui) a family of functions defined

on the open sets of the cover and compatible on the pairwise intersections:

fi|Ui∩Uj = fj|Ui∩Uj
for every pair of members of the cover. Then there exists f ∈ F(U) such

that fi is the restriction of f to Ui for all i.
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Sheaves and exact sequences

REMARK: A presheaf of functions is a collection of subrings of functions

on open subsets, compatible with restrictions. A sheaf of fuctions is a

presheaf allowing “gluing” a function on a bigger open set if its restrictions

to smaller open sets are compatible.

DEFINITION: A sequence A1 −→A2 −→A3 −→ ... of homomorphisms of

abelian groups or vector spaces is called exact if the image of each map

is the kernel of the next one.

CLAIM: A presheaf F is a sheaf if and only if for every cover {Ui} of an open

subset U ⊂M , the sequence of restriction maps

0→ F(U)→
∏
i

F(Ui)→
∏
i 6=j

F(Ui ∩ Uj)

is exact, with η ∈ F(Ui) mapped to η
∣∣∣Ui∩Uj and −η

∣∣∣Uj∩Ui .
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Sheaves and presheaves: examples

Examples of sheaves:

* Space of continuous functions

* Space of smooth functions, any differentiability class

* Space of real analytic functions

Examples of presheaves which are not sheaves:

* Space of constant functions (why?)

* Space of bounded functions (why?)
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Ringed spaces

A ringed space (M,F) is a topological space equipped with a sheaf of func-

tions. A morphism (M,F)
Ψ−→ (N,F ′) of ringed spaces is a continuous map

M
Ψ−→ N such that, for every open subset U ⊂ N and every function f ∈ F ′(U),

the function ψ∗f := f ◦Ψ belongs to the ring F
(
Ψ−1(U)

)
. An isomorphism

of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ−1 are morphisms

of ringed spaces.

EXAMPLE: Let M be a manifold of class Ci and let Ci(U) be the space of

functions of this class. Then Ci is a sheaf of functions, and (M,Ci) is a

ringed space.

REMARK: Let f : X −→ Y be a smooth map of smooth manifolds. Since a

pullback f∗µ of a smooth function µ ∈ C∞(M) is smooth, a smooth map of

smooth manifolds defines a morphism of ringed spaces.

Converse is also true:
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Ringed spaces and smooth maps

CLAIM: Let (M,Ci) and (N,Ci) be manifolds of class Ci. Then there is

a bijection between smooth maps f : M −→N and the morphisms of

corresponding ringed spaces.

Proof: Any smooth map induces a morphism of ringed spaces. Indeed, a

composition of smooth functions is smooth, hence a pullback is also

smooth.

Conversely, let Ui −→ Vi be a restriction of f to some charts; to show that

f is smooth, it would suffice to show that Ui −→ Vi is smooth. However, we

know that a pullback of any smooth function is smooth. Therefore, Claim

is implied by the following lemma.

LEMMA: Let M,N be open subsets in Rn and let f : M → N map such that

a pullback of any function of class Ci belongs to Ci. Then f is of class Ci.

Proof: Apply f to coordinate functions.
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A new definition of a manifold

As we have just shown, this definition is equivalent to the previous one.

DEFINITION: Let (M,F) be a topological manifold equipped with a sheaf

of functions. It is said to be a smooth manifold of class C∞ or Ci if every

point in (M,F) has an open neighborhood isomorphic to the ringed space

(Rn,F ′), where F ′ is a ring of functions on Rn of this class.

DEFINITION: A chart, or a coordinate system on an open subset U of

a manifold (M,F) is an isomorphism between (U,F) and an open subset in

(Rn,F ′), where F ′ are functions of the same class on Rn.

DEFINITION: Diffeomorphism of smooth manifolds is a homeomorphism

ϕ which induces an isomorphim of ringed spaces, that is, ϕ and ϕ−1 map

(locally defined) smooth functions to smooth functions.

Assume from now on that all manifolds are Hausdorff and of class C∞.
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