Differential geometry

lecture 2: partition of unity

Misha Verbitsky

Université Libre de Bruxelles

October 10, 2016

Smooth manifolds in terms of maps and atlases (reminder)

DEFINITION: Topological manifold is a topological space which is locally homeomorphic to an open ball in \mathbb{R}^n .

DEFINITION: An open cover of a topological space X is a family of open sets $\{U_i\}$ such that $\bigcup_i U_i = X$.

DEFINITION: Let M be a topological manifold. A cover $\{U_i\}$ of M is an **atlas** if for every U_i , we have a map $\varphi_i : U_i \to \mathbb{R}^n$ giving a homeomorphism of U_i with an open subset in \mathbb{R}^n . In this case, one defines the **transition maps**

 $\Phi_{ij}:\varphi_i(U_i\cap U_j)\to\varphi_j(U_i\cap U_j)$

DEFINITION: A function $\mathbb{R} \longrightarrow \mathbb{R}$ is of differentiability class C^i if it is *i* times differentiable, and its *i*-th derivative is continuous. A map $\mathbb{R}^n \longrightarrow \mathbb{R}^m$ is of differentiability class C^i if all its coordinate components are. A smooth function/map is a function/map of class $C^{\infty} = \bigcap C^i$.

DEFINITION: An atlas is **smooth** if all transition maps are smooth (of class C^{∞} , i.e., infinitely differentiable), **smooth of class** C^{i} if all transition functions are of differentiability class C^{i} , and **real analytic** if all transition maps admit a Taylor expansion at each point.

Sheaves of functions (reminder)

DEFINITION: A presheaf of functions on a topological space M is a collection of subrings $\mathcal{F}(U) \subset C(U)$ in the ring C(U) of all functions on U, for each open subset $U \subset M$, such that the restriction of every $\gamma \in \mathcal{F}(U)$ to an open subset $U_1 \subset U$ belongs to $\mathcal{F}(U_1)$.

DEFINITION: A presheaf of functions \mathcal{F} is called a sheaf of functions if these subrings satisfy the following condition. Let $\{U_i\}$ be a cover of an open subset $U \subset M$ (possibly infinite) and $f_i \in \mathcal{F}(U_i)$ a family of functions defined on the open sets of the cover and compatible on the pairwise intersections:

$$f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$$

for every pair of members of the cover. Then there exists $f \in \mathcal{F}(U)$ such that f_i is the restriction of f to U_i for all i.

Sheaves and presheaves: examples (reminder)

Examples of sheaves:

- * Space of continuous functions
- * Space of smooth functions, any differentiability class
- * Space of real analytic functions

Examples of presheaves which are not sheaves:

- * Space of constant functions (why?)
- * Space of bounded functions (why?)

Ringed spaces (reminder)

A ringed space (M, \mathcal{F}) is a topological space equipped with a sheaf of functions. A morphism $(M, \mathcal{F}) \xrightarrow{\Psi} (N, \mathcal{F}')$ of ringed spaces is a continuous map $M \xrightarrow{\Psi} N$ such that, for every open subset $U \subset N$ and every function $f \in \mathcal{F}'(U)$, the function $\psi^* f := f \circ \Psi$ belongs to the ring $\mathcal{F}(\Psi^{-1}(U))$. An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ^{-1} are morphisms of ringed spaces.

CLAIM: Let (M, C^i) and (N, C^i) be manifolds of class C^i . Then there is a bijection between smooth maps $f : M \longrightarrow N$ and the morphisms of corresponding ringed spaces.

DEFINITION: Let (M, \mathcal{F}) be a topological manifold equipped with a sheaf of functions. It is said to be a **smooth manifold of class** C^{∞} or C^i if every point in (M, \mathcal{F}) has an open neighborhood isomorphic to the ringed space $(\mathbb{R}^n, \mathcal{F}')$, where \mathcal{F}' is a ring of functions on \mathbb{R}^n of this class.

Embedded submanifolds (reminder)

DEFINITION: A closed embedding φ : $N \hookrightarrow M$ of topological spaces is an injective map from N to a closed subset $\varphi(N)$ inducing a homeomorphism of N and $\varphi(N)$.

DEFINITION: $N \subset M$ is called a submanifold of dimension m if for every point $x \in N$, there is a neighborhood $U \subset K$ diffeomorphic to an open ball, such that this diffeomorphism maps $U \cap N$ onto a linear subspace of dimension m.

REMARK: Any submanifold $N \subset M$ is equipped with a structure of a manifold induced from M.

DEFINITION: A smooth embedding $f: M \longrightarrow N$ of smooth manifolds is a closed embedding inducing a diffeomorphism of M to its image.

THEOREM: (Whitney theorem) Any manifold can be smoothly embedded to \mathbb{R}^n .

Proven later today.

Locally finite covers

DEFINITION: An open cover $\{U_{\alpha}\}$ of a topological space M is called **locally** finite if every point in M possesses a neighborhood that intersects only a finite number of U_{α} .

Claim 1: Let $\{U_{\alpha}\}$ be an atlas on a manifold M. Then there exists a refinement $\{W_{\beta}\}$ of $\{U_{\alpha}\}$ such that a closure of each W_{β} is compact in M.

Proof: Let $\{U_{\alpha}\}$ be an atlas on M, and $U_{\alpha} \xrightarrow{\varphi_{\alpha}} \mathbb{R}^{n}$ homeomorphisms. Consider a cover $\{V_{i}\}$ of \mathbb{R}^{n} given by open balls of radius 2 centered in integer points, and let $\{W_{\beta}\}$ be a cover of M obtained as union of $\varphi_{\alpha}^{-1}(V_{i})$.

DEFINITION: Let $U \subset V$ be two open subsets of M such that the closure of U is contained in V. In this case we write $U \in V$.

DEFINITION: An open cover $\{U_{\alpha}\}$ of a topological space M is called **locally** finite if every point in M possesses a neighborhood that intersects only a finite number of U_{α} .

REMARK: If the atlas $\{U_{\alpha}\}$ considered in Claim 1 is locally finite then **the** atlas $\{W_{\beta}\}$ is also locally finite.

Locally finite covers and their refinements

THEOREM: Let $\{U_{\alpha}\}$ be a countable locally finite cover of a Hausdorff topological manifold, such that a closure of each U_{α} is compact, and each U_{α} is homeomorphic to \mathbb{R}^n . Then there exists another cover $\{V_{\alpha}\}$ indexed by the same set such that $V_{\alpha} \in U_{\alpha}$.

Proof. Step 1: Let $K_{\alpha} := M \setminus \bigcup_{\beta \neq \alpha} U_{\beta}$. By definition, K_{α} is closed. Sice $\{U_{\alpha}\}$ is a cover, $K_{\alpha} \subset U_{\alpha}$. Since the closure of U_{α} is compact, and $K_{\alpha} \subset U_{\alpha}$, the set K_{α} is compact. Therefore, K_{α} is contained in an open ball B_{α} of sufficiently big radius in $U_{\alpha} = \mathbb{R}^{n}$.

Step 2: Let $U_1, U_2, ...$ be all elements of the cover. Suppose that $V_1, ..., V_{n-1}$ is already found. To take an induction step it remains to find $V_n \in U_n$

Step 3: Replacing U_i by V_i and renumbering, we may assume that n = 1. **Then the statement of Theorem follows from Step 1** by taking $V_1 := B_1$, where B_1 is an open ball containing $K_1 := M \setminus \bigcup_{\beta \neq 1} U_\beta$.

Construction of a partition of unity

REMARK: If all U_{α} are diffeomorphic to \mathbb{R}^n , all V_{α} can be chosen diffeomorphic to an open ball. Indeed, any compact set is contained in an open ball.

COROLLARY: Let M be a manifold admitting a locally finite cover $\{U_{\alpha}\}$, with φ_{α} : $U_{\alpha} \longrightarrow \mathbb{R}^{n}$ diffeomorphisms. Then there exists another atlas $\{U_{\alpha}, \varphi'_{\alpha} : U_{\alpha} \longrightarrow \mathbb{R}^{n}\}$, such that $\varphi'_{\alpha}(\mathbb{B})$ is also a cover of M, and $\mathbb{B} \subset \mathbb{R}^{n}$ a unit ball.

EXERCISE: Find a smooth function ν : $\mathbb{R}^n \longrightarrow [0,1]$ which vanishes outside of $\mathbb{B} \subset \mathbb{R}^n$ and is positive on \mathbb{B} .

REMARK: In assumptions of Corollary, let $\nu_{\alpha}(z) := \nu(\varphi'_{\alpha})$, and $\mu_i := \frac{\nu_i}{\sum_{\alpha} \nu_{\alpha}}$. Then μ_{α} : $M \longrightarrow [0, 1]$ are smooth functions with support in U_{α} satisfying $\sum_{\alpha} \mu_{\alpha} = 1$. Such a set of functions is called a partition of unity.

Partition of unity: a formal definition

DEFINITION: Let M be a smooth manifold and let $\{U_{\alpha}\}$ a locally finite cover of M. A **partition of unity** subordinate to the cover $\{U_{\alpha}\}$ is a family of smooth functions $f_i : M \to [0, 1]$ with compact support satisfying the following conditions.

(a) Every function f_i has compact support in some U_i

(b)
$$\sum_i f_i = 1$$

The argument of previous page proves the following theorem.

THEOREM: Let $\{U_{\alpha}\}$ be a countable, locally finite cover of a manifold M, with all U_{α} diffeomorphic to \mathbb{R}^n . Then there exists a partition of unity subordinate to $\{U_{\alpha}\}$.

Whitney theorem for compact manifolds

THEOREM: Let M be a compact smooth manifold. Then M admits a closed smooth embedding to \mathbb{R}^N .

Proof. Step 1: Choose a finite atlas $\{V_i, \varphi_i : V_i \longrightarrow \mathbb{R}^n, i = 1, 2, ..., m\}$, and subordinate partution of unity $\mu_i : M \longrightarrow [0, 1]$.

Step 2: Denote by W_i the set $W_i := \{z \mid \mu_i(z) > \frac{1}{2m}\}$. Since $\sum_{i=1}^m \mu_i = 1$, the set $\{W_i\}$ is a cover of M. Let $\alpha : [0, 1] \longrightarrow [0, 1]$ be a smooth, monotonous function mapping 0 to 0 and [1/2m, 1] to 1, and $\nu_i := \alpha(\mu_i)$. Then $\nu_i = 1$ on W_i .

Step 3: For each *i*, the map $\tilde{\Phi}_i(z) := \nu_i \varphi_i(z)$ is smooth and induces a diffeomorphism of W_i and an open subset of \mathbb{R}^n .

Step 4: The product map

$$\Psi := \prod_{i=1}^{m} : \Phi_i : M \longrightarrow \underbrace{\mathbb{R}^n \times \mathbb{R}^n \times \ldots \times \mathbb{R}^n}_{m \text{ times}}$$

is an injective, continuous map from a compact, hence it is a homeomorphism to its image. It is a smooth embedding, because its differential is injective (use "implicit/inverse function theorem"). ■

Embedding to \mathbb{R}^∞

QUESTION: What if *M* **is non-compact?**

DEFINITION: Define \mathbb{R}_f^I as a direct sum of several copies of \mathbb{R} indexed by a set I, that is, the set of points in a product where only finitely meny of coordinates can be non-zero. The set \mathbb{R}_f^I has metric

$$d((x_1, ..., x_n, ...), (y_1, ..., y_n, ...)) := \sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2 + ... + |x_n - y_n| +}$$

It is well-defined, because only finitely many of x_i, y_i are non-zero.

THEOREM: Let M be a compact smooth manifold, $\{V_i, \varphi_i : V_i \longrightarrow \mathbb{R}^n, i \in I\}$ be a locally finite atlas, and $\mu_i : M \longrightarrow [0, 1]$ a subordinate partition of unity. Define $\nu_i := \alpha(\mu_i)$ and Φ_i as above, and let

$$\Psi := \prod_{I} : \Phi_i : M \longrightarrow \underbrace{\mathbb{R}^n \times \mathbb{R}^n \times \dots \times \mathbb{R}^n}_{I \text{ times}} \subset (\mathbb{R}^{n+1})^I$$

be the corresponding product map. Then Ψ is a homeomorphism to its image.

Embedding to \mathbb{R}^{∞} (cont.)

THEOREM: Let M be a compact smooth manifold, $\{V_i, \varphi_i : V_i \longrightarrow \mathbb{R}^n, i \in I\}$ be a locally finite atlas, and $\mu_i : M \longrightarrow [0, 1]$ a subordinate partition of unity. Define $\nu_i := \alpha(\mu_i)$ and Φ_i as above, and let

$$\Psi := \prod_{I} : \Phi_i : M \longrightarrow \underbrace{\mathbb{R}^n \times \mathbb{R}^n \times \dots \times \mathbb{R}^n}_{I \text{ times}} \subset (\mathbb{R}^{n+1})^I$$

be the corresponding product map. Then Ψ is a homeomorphism to its image.

Proof. Step 1: Ψ is injective by construction. To prove that it is a homeomorphism, it suffices to check that an image of an open set U is open in $\Psi(M)$, for each $U \subset W_i$, for some open cover $\{W_i\}$

Step 2: However, the set $\Psi(W_i)$ is determined by $\nu_i(z) = 1$, that is, by $\Phi_i(z)_{n+1} = 1$, where $\Phi_i(z)_{n+1}$ is the last coordinate of $\Phi_i(z)$. Therefore, Ψ maps W_i to an open subset of $\Psi(M)$.

Step 3: Since $\Phi_i |_{\overline{W}_i}$ (restriction to a closure) is a continuous, bijective map from a compact, it's a homeomorphism. Therefore, **an image of any open subset** $U \subset W_i$ is open in $\Psi(W_i)$, which is open in $\Psi(M)$ as follows from **Step 2.**

Measure 0 subsets and Sard's theorem

DEFINITION: A subset $Z \subset \mathbb{R}^n$ has measure zero if, for every $\varepsilon > 0$, there exists a countable cover of Z by open balls U_i such that $\sum_i \text{Vol } U_i < \varepsilon$.

DEFINITION: A subset $Z \subset M$ of a manifold M has measure 0 if intersection of M with each chart $U_i \hookrightarrow \mathbb{R}^n$ has measure 0.

Properties of measure 0 subsets.

A countable union of measure 0 subsets has measure 0.

A measure 0 subset $Z \subset M$ satisfies $(M \setminus Z) \cap U \neq \emptyset$ for any non-empty open subset $U \subset M$.

THEOREM: (a special case of Sard's Lemma) Let $f : M \longrightarrow N$ be a smooth map of manifolds, dim $M < \dim N$. Then f(M) has measure zero in N.

EXERCISE: Prove it.

Whitney's theorem (with a bound on dimension): strategy of the proof

THEOREM: Let *M* be a smooth *n*-manifold. Then *M* admits a closed embedding to \mathbb{R}^{2n+2} .

Strategy of the proof:

1. *M* is embedded to \mathbb{R}^{∞} .

2. We find a linear projection $\mathbb{R}^{\infty} \xrightarrow{\pi} \mathbb{R}^{2n+2}$ such that $\pi|_M$ is a closed embedding of manifolds.

LEMMA: Let $M \subset \mathbb{R}^I$ be a subset, and $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^J$ a linear projection. Consider the set W of all vectors $\mathbb{R}(x-y)$, where $x, y \in M$ are distinct points. **Then** $\pi|_M$ **is injective if and only if** ker $\pi \cap W = 0$.

Proof:: $\pi|_M$ is not injective if and only if $\pi(x) = \pi(y)$, which is equivalent to $\pi(x-y) = 0$.

Whitney's theorem: injectivity of projections

REMARK: Let $M \subset \mathbb{R}^I$ be a submanifold, and $W \subset \mathbb{R}^I$ the set of all vectors $\mathbb{R}(x-y)$, where $x, y \in M$ are distinct points. Then W is an image of a 2m+1-dimensional manifold, hence (by Sard's Lemma) for any projection of \mathbb{R}^I to a (2m+2)-dimensional space, image of W has measure 0.

COROLLARY: Let $M \subset \mathbb{R}^I$ be an *m*-dimensional submanifold, and $S \subset \mathbb{R}^I$ a maximal linear subspace not intersecting W. Then the projection of Wto \mathbb{R}^I/S is surjective.

Proof:: Suppose it's not surjective: $v \notin S$. Then $S \oplus \mathbb{R}v$ satisfies assumptions of lemma, hence $M \longrightarrow \mathbb{R}^{I}/(S + \mathbb{R}v)$ is also injective.

THEOREM: Let M be a smooth n-manifold, $M \hookrightarrow \mathbb{R}^I$ an embedding constructed earlier. Then there exists a projection $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^{2n+2}$ which is injective on M.

Proof:: Let *S* be the maximal linear subspace such that the restriction of $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^I / S$ to *M* is injective. Then the 2m + 1-dimensional manifold *W* surjects to \mathbb{R}^I / S , hence dim $\mathbb{R}^i / S \leq 2m + 1$ by Sard's lemma.

Tangent space to an embedded manifold

DEFINITION: Let $M \hookrightarrow \mathbb{R}^n$ be a smooth *m*-submanifold. The **tangent** plane at $p \in M$ is the plane in \mathbb{R}^n tangent to M (i.e, the plane lying in the image of the differential given in local coordinates). A **tangent vector** is an arbitrary vector in this plane with the origin at p. The space of all tangent vectors at p is denoted by T_pM . Given a metric on \mathbb{R}^n , we can define the space of **unit tangent vectors** $\mathbb{S}^{m-1}M$ as the set of all pairs (p, v), where $p \in M$, $v \in T_pM$, and |v| = 1.

REMARK: $\mathbb{S}^{m-1}M$ is a smooth manifold, projected to M with fibers isomorphic to m-1-spheres, hence $\mathbb{S}^{m-1}M$ is (2m-1)-dimensional.

LEMMA: Let $M \subset \mathbb{R}^I$ be a subset, and $\pi : \mathbb{R}^I \longrightarrow \mathbb{R}^J$ a linear projection. Consider the set W' of all vectors $\mathbb{R}t$, where $t \in T_x M$ Then the differential $D\pi|_M$ is injective if and only if ker $\pi \cap W' = 0$.

Now the above argument is repeated: we take a maximal space $S \supset \mathbb{R}^I$ such that the restriction of π : $\mathbb{R}^I \longrightarrow \mathbb{R}^I / S$ to M is injective and has injective differential, and the projection of $W \cup W'$ to \mathbb{R}^I / S has to be surjective. However, W' is an image of an 2m-dimensional manifold $\mathbb{S}^{m-1}M \times \mathbb{R}$, hence **the projection of** $W \cup W'$ to \mathbb{R}^I / S can be surjective only if dim $\mathbb{R}^I / S \leq 2m + 2$.

This proves Whitney's theorem.