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Smooth manifolds in terms of maps and atlases (reminder)

DEFINITION: Topological manifold is a topological space which is locally
homeomorphic to an open ball in Rn.

DEFINITION: An open cover of a topological space X is a family of open
sets {Ui} such that

⋃
iUi = X.

DEFINITION: Let M be a topological manifold. A cover {Ui} of M is an
atlas if for every Ui, we have a map ϕi : Ui → Rn giving a homeomorphism of
Ui with an open subset in Rn. In this case, one defines the transition maps

Φij : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

DEFINITION: A function R−→ R is of differentiability class Ci if it is i

times differentiable, and its i-th derivative is continuous. A map Rn −→ Rm is
of differentiability class Ci if all its coordinate components are. A smooth
function/map is a function/map of class C∞ =

⋂
Ci.

DEFINITION: An atlas is smooth if all transition maps are smooth (of class
C∞, i.e., infinitely differentiable), smooth of class Ci if all transition functions
are of differentiability class Ci, and real analytic if all transition maps admit
a Taylor expansion at each point.
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Sheaves of functions (reminder)

DEFINITION: A presheaf of functions on a topological space M is a

collection of subrings F(U) ⊂ C(U) in the ring C(U) of all functions on U , for

each open subset U ⊂ M , such that the restriction of every γ ∈ F(U) to an

open subset U1 ⊂ U belongs to F(U1).

DEFINITION: A presheaf of functions F is called a sheaf of functions if

these subrings satisfy the following condition. Let {Ui} be a cover of an open

subset U ⊂ M (possibly infinite) and fi ∈ F(Ui) a family of functions defined

on the open sets of the cover and compatible on the pairwise intersections:

fi|Ui∩Uj = fj|Ui∩Uj
for every pair of members of the cover. Then there exists f ∈ F(U) such

that fi is the restriction of f to Ui for all i.
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Sheaves and presheaves: examples (reminder)

Examples of sheaves:

* Space of continuous functions

* Space of smooth functions, any differentiability class

* Space of real analytic functions

Examples of presheaves which are not sheaves:

* Space of constant functions (why?)

* Space of bounded functions (why?)
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Ringed spaces (reminder)

A ringed space (M,F) is a topological space equipped with a sheaf of func-

tions. A morphism (M,F)
Ψ−→ (N,F ′) of ringed spaces is a continuous map

M
Ψ−→ N such that, for every open subset U ⊂ N and every function f ∈ F ′(U),

the function ψ∗f := f ◦Ψ belongs to the ring F
(
Ψ−1(U)

)
. An isomorphism

of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ−1 are morphisms

of ringed spaces.

CLAIM: Let (M,Ci) and (N,Ci) be manifolds of class Ci. Then there is

a bijection between smooth maps f : M −→N and the morphisms of

corresponding ringed spaces.

DEFINITION: Let (M,F) be a topological manifold equipped with a sheaf

of functions. It is said to be a smooth manifold of class C∞ or Ci if every

point in (M,F) has an open neighborhood isomorphic to the ringed space

(Rn,F ′), where F ′ is a ring of functions on Rn of this class.
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Embedded submanifolds (reminder)

DEFINITION: A closed embedding ϕ : N ↪→ M of topological spaces is

an injective map from N to a closed subset ϕ(N) inducing a homeomorphism

of N and ϕ(N).

DEFINITION: N ⊂ M is called a submanifold of dimension m if for every

point x ∈ N , there is a neighborhood U ⊂ K diffeomorphic to an open ball,

such that this diffeomorphism maps U∩N onto a linear subspace of dimension

m.

REMARK: Any submanifold N ⊂ M is equipped with a structure of a

manifold induced from M .

DEFINITION: A smooth embedding f : M −→N of smooth manifolds is

a closed embedding inducing a diffeomorphism of M to its image.

THEOREM: (Whitney theorem)

Any manifold can be smoothly embedded to Rn.

Proven later today.
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Locally finite covers

DEFINITION: An open cover {Uα} of a topological space M is called locally
finite if every point in M possesses a neighborhood that intersects only a finite
number of Uα.

Claim 1: Let {Uα} be an atlas on a manifold M . Then there exists a
refinement {Wβ} of {Uα} such that a closure of each Wβ is compact in
M.

Proof: Let {Uα} be an atlas on M , and Uα
ϕα−→ Rn homeomorphisms. Con-

sider a cover {Vi} of Rn given by open balls of radius 2 centered in integer
points, and let {Wβ} be a cover of M obtained as union of ϕ−1

α (Vi).

DEFINITION: Let U ⊂ V be two open subsets of M such that the closure
of U is contained in V . In this case we write U b V .

DEFINITION: An open cover {Uα} of a topological space M is called locally
finite if every point in M possesses a neighborhood that intersects only a finite
number of Uα.

REMARK: If the atlas {Uα} considered in Claim 1 is locally finite then the
atlas {Wβ} is also locally finite.
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Locally finite covers and their refinements

THEOREM: Let {Uα} be a countable locally finite cover of a Hausdorff

topological manifold, such that a closure of each Uα is compact, and each Uα

is homeomorphic to Rn. Then there exists another cover {Vα} indexed

by the same set such that Vα b Uα.

Proof. Step 1: Let Kα := M\
⋃
β 6=αUβ. By definition, Kα is closed. Sice

{Uα} is a cover, Kα ⊂ Uα. Since the closure of Uα is compact, and Kα ⊂ Uα,

the set Kα is compact. Therefore, Kα is contained in an open ball Bα of

sufficiently big radius in Uα = Rn.

Step 2: Let U1, U2, ... be all elements of the cover. Suppose that V1, ..., Vn−1

is already found. To take an induction step it remains to find Vn b Un

Step 3: Replacing Ui by Vi and renumbering, we may assume that n = 1.

Then the statement of Theorem follows from Step 1 by taking V1 := B1,

where B1 is an open ball containing K1 := M\
⋃
β 6=1Uβ.
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Construction of a partition of unity

REMARK: If all Uα are diffeomorphic to Rn, all Vα can be chosen diffeo-

morphic to an open ball. Indeed, any compact set is contained in an open

ball.

COROLLARY: Let M be a manifold admitting a locally finite cover {Uα},
with ϕα : Uα −→ Rn diffeomorphisms. Then there exists another atlas

{Uα, ϕ′α : Uα −→ Rn}, such that ϕ′α(B) is also a cover of M, and B ⊂ Rn a

unit ball.

EXERCISE: Find a smooth function ν : Rn −→ [0,1] which vanishes

outside of B ⊂ Rn and is positive on B.

REMARK: In assumptions of Corollary, let να(z) := ν(ϕ′α), and µi := νi∑
α να

.

Then µα : M −→ [0,1] are smooth functions with support in Uα satisfying∑
α µα = 1. Such a set of functions is called a partition of unity.
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Partition of unity: a formal definition

DEFINITION: Let M be a smooth manifold and let {Uα} a locally finite

cover of M . A partition of unity subordinate to the cover {Uα} is a family of

smooth functions fi : M → [0,1] with compact support satisfying the following

conditions.

(a) Every function fi has compact support in some Ui
(b)

∑
i fi = 1

The argument of previous page proves the following theorem.

THEOREM: Let {Uα} be a countable, locally finite cover of a manifold M ,

with all Uα diffeomorphic to Rn. Then there exists a partition of unity

subordinate to {Uα}.
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Whitney theorem for compact manifolds

THEOREM: Let M be a compact smooth manifold. Then M admits a
closed smooth embedding to RN.

Proof. Step 1: Choose a finite atlas {Vi, ϕi : Vi −→ Rn, i = 1,2, ...,m}, and
subordinate partution of unity µi : M −→ [0,1].

Step 2: Denote by Wi the set Wi := {z | µi(z) > 1
2m}. Since

∑m
i=1 µi = 1, the

set {Wi} is a cover of M. Let α : [0,1]−→ [0,1] be a smooth, monotonous
function mapping 0 to 0 and [1/2m,1] to 1, and νi := α(µi). Then νi = 1 on
Wi.

Step 3: For each i, the map Φ̃i(z) := νiϕi(z) is smooth and induces a
diffeomorphism of Wi and an open subset of Rn.

Step 4: The product map

Ψ :=
m∏
i=1

: Φi : M −→ Rn × Rn × ...× Rn︸ ︷︷ ︸
m times

is an injective, continuous map from a compact, hence it is a homeomor-
phism to its image. It is a smooth embedding, because its differential is
injective (use “implicit/inverse function theorem”).
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Embedding to R∞

QUESTION: What if M is non-compact?

DEFINITION: Define RIf as a direct sum of several copies of R indexed by

a set I, that is, the set of points in a product where only finitely meny of

coordinates can be non-zero. The set RIf has metric

d((x1, ..., xn, ...), (y1, ..., yn, ...)) :=
√
|x1 − y1|2 + |x2 − y2|2 + ...+ |xn − yn|+ ....

It is well-defined, because only finitely many of xi, yi are non-zero.

THEOREM: Let M be a compact smooth manifold, {Vi, ϕi : Vi −→ Rn, i ∈ I}
be a locally finite atlas, and µi : M −→ [0,1] a subordinate partition of unity.

Define νi := α(µi) and Φi as above, and let

Ψ :=
∏
I

: Φi : M −→ Rn × Rn × ...× Rn︸ ︷︷ ︸
I times

⊂ (Rn+1)I

be the corresponding product map. Then Ψ is a homeomorphism to its

image.
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Embedding to R∞ (cont.)

THEOREM: Let M be a compact smooth manifold, {Vi, ϕi : Vi −→ Rn, i ∈ I}
be a locally finite atlas, and µi : M −→ [0,1] a subordinate partition of unity.
Define νi := α(µi) and Φi as above, and let

Ψ :=
∏
I

: Φi : M −→ Rn × Rn × ...× Rn︸ ︷︷ ︸
I times

⊂ (Rn+1)I

be the corresponding product map. Then Ψ is a homeomorphism to its
image.

Proof. Step 1: Ψ is injective by construction. To prove that it is a home-
omorphism, it suffices to check that an image of an open set U is open in
Ψ(M), for each U ⊂Wi, for some open cover {Wi}

Step 2: However, the set Ψ(Wi) is determined by νi(z) = 1, that is, by
Φi(z)n+1 = 1, where Φi(z)n+1 is the last coordinate of Φi(z). Therefore, Ψ
maps Wi to an open subset of Ψ(M).

Step 3: Since Φi

∣∣∣W i
(restriction to a closure) is a continuous, bijective map

from a compact, it’s a homeomorphism. Therefore, an image of any open
subset U ⊂Wi is open in Ψ(Wi), which is open in Ψ(M) as follows from
Step 2.
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Measure 0 subsets and Sard’s theorem

DEFINITION: A subset Z ⊂ Rn has measure zero if, for every ε > 0, there

exists a countable cover of Z by open balls Ui such that
∑
iVolUi < ε.

DEFINITION: A subset Z ⊂M of a manifold M has measure 0 if intersec-

tion of M with each chart Ui ↪→ Rn has measure 0.

Properties of measure 0 subsets.

A countable union of measure 0 subsets has measure 0.

A measure 0 subset Z ⊂ M satisfies (M\Z) ∩ U 6= ∅ for any non-empty

open subset U ⊂M .

THEOREM: (a special case of Sard’s Lemma) Let f : M −→N be a

smooth map of manifolds, dimM < dimN . Then f(M) has measure zero

in N.

EXERCISE: Prove it.
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Whitney’s theorem (with a bound on dimension): strategy of the proof

THEOREM: Let M be a smooth n-manifold. Then M admits a closed

embedding to R2n+2.

Strategy of the proof:

1. M is embedded to R∞.

2. We find a linear projection R∞ π−→ R2n+2 such that π|M is a closed

embedding of manifolds.

LEMMA: Let M ⊂ RI be a subset, and π : RI −→ RJ a linear projection.

Consider the set W of all vectors R(x− y), where x, y ∈M are distinct points.

Then π|M is injective if and only if ker π ∩W = 0.

Proof:: π|M is not injective if and only if π(x) = π(y), which is equivalent to

π(x− y) = 0.
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Whitney’s theorem: injectivity of projections

REMARK: Let M ⊂ RI be a submanifold, and W ⊂ RI the set of all vectors

R(x−y), where x, y ∈M are distinct points. Then W is an image of a 2m+1-

dimensional manifold, hence (by Sard’s Lemma) for any projection of RI

to a (2m+ 2)-dimensional space, image of W has measure 0.

COROLLARY: Let M ⊂ RI be an m-dimensional submanifold, and S ⊂ RI

a maximal linear subspace not intersecting W . Then the projection of W

to RI/S is surjective.

Proof:: Suppose it’s not surjective: v /∈ S. Then S⊕Rv satisfies assumptions

of lemma, hence M −→ RI/(S + Rv) is also injective.

THEOREM: Let M be a smooth n-manifold, M ↪→ RI an embedding con-

structed earlier. Then there exists a projection π : RI −→ R2n+2 which is

injective on M.

Proof:: Let S be the maximal linear subspace such that the restriction of

π : RI −→ RI/S to M is injective. Then the 2m + 1-dimensional manifold W

surjects to RI/S, hence dimRi/S 6 2m+ 1 by Sard’s lemma.
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Tangent space to an embedded manifold

DEFINITION: Let M ↪→ Rn be a smooth m-submanifold. The tangent
plane at p ∈ M is the plane in Rn tangent to M (i.e, the plane lying in the
image of the differential given in local coordinates). A tangent vector is an
arbitrary vector in this plane with the origin at p. The space of all tangent
vectors at p is denoted by TpM . Given a metric on Rn, we can define the
space of unit tangent vectors Sm−1M as the set of all pairs (p, v), where
p ∈M , v ∈ TpM , and |v| = 1.

REMARK: Sm−1M is a smooth manifold, projected to M with fibers isomor-
phic to m− 1-spheres, hence Sm−1M is (2m− 1)-dimensional.

LEMMA: Let M ⊂ RI be a subset, and π : RI −→ RJ a linear projection.
Consider the set W ′ of all vectors Rt, where t ∈ TxM Then the differential
Dπ|M is injective if and only if ker π ∩W ′ = 0.

Now the above argument is repeated: we take a maximal space S ⊃ RI such
that the restriction of π : RI −→ RI/S to M is injective and has injective
differential, and the projection of W ∪W ′ to RI/S has to be surjective. How-
ever, W ′ is an image of an 2m-dimensional manifold Sm−1M × R, hence the
projection of W ∪W ′ to RI/S can be surjective only if dimRI/S 6 2m+ 2.

This proves Whitney’s theorem.
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