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Smooth manifolds in terms of maps and atlases (reminder)

DEFINITION: Topological manifold is a topological space which is locally
homeomorphic to an open ball in R™.

DEFINITION: An open cover of a topological space X is a family of open
sets {U;} such that ;U; = X.

DEFINITION: Let M be a topological manifold. A cover {U;} of M is an
atlas if for every U;, we have a map ¢; : U; — R"™ giving a homeomorphism of
U; with an open subset in R™. In this case, one defines the transition maps

Pij 1 i (Ui NU;) — ¢ (U; N U;)

DEFINITION: A function R — R is of differentiability class C? if it is i
times differentiable, and its :-th derivative is continuous. A map R” — R™ is
of differentiability class C" if all its coordinate components are. A smooth
function/map is a function/map of class C>® = NC".

DEFINITION: An atlas is smooth if all transition maps are smooth (of class
C®°, i.e., infinitely differentiable), smooth of class C' if all transition functions
are of differentiability class €%, and real analytic if all transition maps admit
a Taylor expansion at each point.
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Sheaves of functions (reminder)

DEFINITION: A presheaf of functions on a topological space M is a
collection of subrings F(U) C C(U) in the ring C(U) of all functions on U, for
each open subset U C M, such that the restriction of every v € F(U) to an
open subset Uy C U belongs to F(Uy).

DEFINITION: A presheaf of functions F is called a sheaf of functions if
these subrings satisfy the following condition. Let {U;} be a cover of an open
subset U C M (possibly infinite) and f; € F(U;) a family of functions defined
on the open sets of the cover and compatible on the pairwise intersections:

filUiﬂUj — fleiﬂUj
for every pair of members of the cover. Then there exists f ¢ F(U) such
that f; is the restriction of f to U, for all :.
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Sheaves and presheaves: examples (reminder)
Examples of sheaves:

* Space of continuous functions

* Space of smooth functions, any differentiability class
* Space of real analytic functions

Examples of presheaves which are not sheaves:

* Space of constant functions (why?)

* Space of bounded functions (why?)

M. Verbitsky
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Ringed spaces (reminder)

A ringed space (M, F) is a topological space equipped with a sheaf of func-
tions. A morphism (M, F) v, (N, F") of ringed spaces is a continuous map
M L N such that, for every open subset U C N and every function f € F(U),
the function ¥*f ;= f o W belongs to the ring ]—“(\U—l(U)). An isomorphism
of ringed spaces is a homeomorphism W such that W and w1 are morphisms
of ringed spaces.

CLAIM: Let (M,C% and (N,C") be manifolds of class C*. Then there is
a bijection between smooth maps f: M — N and the morphisms of
corresponding ringed spaces.

DEFINITION: Let (M, F) be a topological manifold equipped with a sheaf
of functions. It is said to be a smooth manifold of class C>® or C" if every
point in (M,F) has an open neighborhood isomorphic to the ringed space
(R™, "), where F' is a ring of functions on R" of this class.
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Embedded submanifolds (reminder)

DEFINITION: A closed embedding ¢ : N — M of topological spaces is
an injective map from N to a closed subset (V) inducing a homeomorphism
of N and (V).

DEFINITION: N C M is called a submanifold of dimension m if for every
point x € N, there is a neighborhood U C K diffeomorphic to an open ball,
such that this diffeomorphism maps UNN onto a linear subspace of dimension

m.

REMARK: Any submanifold N C M is equipped with a structure of a
manifold induced from M.

DEFINITION: A smooth embedding f: M — N of smooth manifolds is
a closed embedding inducing a diffeomorphism of M to its image.

THEOREM: (Whithey theorem)
Any manifold can be smoothly embedded to R",.

Proven later today.
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Locally finite covers

DEFINITION: An open cover {Uy} of a topological space M is called locally
finite if every point in M possesses a neighborhood that intersects only a finite
number of U,.

Claim 1: Let {Uy} be an atlas on a manifold M. Then there exists a
refinement {Wsz} of {U,} such that a closure of each W3 is compact in
M.

Proof: Let {U,} be an atlas on M, and Uy, Fo, Rn homeomorphisms. Con-
sider a cover {V;} of R™ given by open balls of radius 2 centered in integer
points, and let {Wgz} be a cover of M obtained as union of e 1(V;). =

DEFINITION: Let U C V be two open subsets of M such that the closure
of U is contained in V. In this case we write U c V.

DEFINITION: An open cover {U,} of a topological space M is called locally
finite if every point in M possesses a neighborhood that intersects only a finite
number of U,.

REMARK: If the atlas {U,} considered in Claim 1 is locally finite then the
atlas {Wg} is also locally finite.

-
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Locally finite covers and their refinements

THEOREM: Let {U,} be a countable locally finite cover of a Hausdorff
topological manifold, such that a closure of each U, is compact, and each U,
is homeomorphic to R™. Then there exists another cover {V,} indexed
by the same set such that V, e U,.

Proof. Step 1: Let K, = M\Uﬁ#a Ug. By definition, K, is closed. Sice
{Ua} is a cover, Ko C Uy. Since the closure of Uy, is compact, and Ky C Uy,
the set K, is compact. Therefore, K, is contained in an open ball B, of
sufficiently big radius in Uy = R™.

Step 2: Let Uy,Us,... be all elements of the cover. Suppose that V4,...,V,,_1
IS already found. To take an induction step it remains to find V,, € U,

Step 3: Replacing U; by V; and renumbering, we may assume that n = 1.
Then the statement of Theorem follows from Step 1 by taking V7 := By,
where Bj is an open ball containing K7 := M\ Ugx1Ug. =
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Construction of a partition of unity

REMARK: If all U, are diffeomorphic to R", all V, can be chosen diffeo-
morphic to an open ball. Indeed, any compact set is contained in an open
ball.

COROLLARY: Let M be a manifold admitting a locally finite cover {Ua},
with ¢q : Uy — R™ diffeomorphisms. Then there exists another atlas
{Uq, oL, : Uy — R™}, such that o/ (B) is also a cover of M, and B C R" a
unit ball. =

EXERCISE: Find a smooth function v : R" — [0,1] which vanishes
outside of B C R"™ and is positive on B.

Vi
o Vo

Then puo : M —[0,1] are smooth functions with support in U, satisfying
> aMa = 1. Such a set of functions is called a partition of unity.

REMARK: In assumptions of Corollary, let vo(2) :=v(y,), and p; = 5
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Partition of unity: a formal definition

DEFINITION: Let M be a smooth manifold and let {U,} a locally finite
cover of M. A partition of unity subordinate to the cover {U,} is a family of
smooth functions f; : M — [0, 1] with compact support satisfying the following
conditions.

(a) Every function f; has compact support in some U;

(b) > fi=1
The argument of previous page proves the following theorem.
THEOREM: Let {U,} be a countable, locally finite cover of a manifold M,

with all U, diffeomorphic to R™. Then there exists a partition of unity
subordinate to {U,}.

10



Differential geometry, lecture 2 M. Verbitsky

Whitney theorem for compact manifolds

THEOREM: Let M be a compact smooth manifold. Then M admits a
closed smooth embedding to RV,

Proof. Step 1: Choose a finite atlas {V;,p; : V;, —R" i =1,2,...,m}, and
subordinate partution of unity u; : M — [0, 1].

Step 2: Denote by W; theset W; :={z | p;(z) > %}. Since Y ; u; = 1, the
set {W,} is a cover of M. Let a: [0,1] — [0, 1] be a smooth, monotonous
function mapping 0 to 0 and [1/2m,1] to 1, and v; := a(u;). Then v; =1 on
wW;.

Step 3: For each i, the map ®,(z2) := r;0;(z) is smooth and induces a
diffeomorphism of W; and an open subset of R™.

Step 4: The product map

m
Vi=]]:®;: M—R'xXR"x..xR"
1=1 m times
IS an injective, continuous map from a compact, hence it iIs a homeomor-
phism to its image. It is a smooth embedding, because its differential is
injective (use “implicit/inverse function theorem’ ). =
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Embedding to R*°
QUESTION: What if M is non-compact?

DEFINITION: Define Rfc as a direct sum of several copies of R indexed by
a set I, that is, the set of points in a product where only finitely meny of
coordinates can be non-zero. The set Rff has metric

A1y oo Ty o)y YLy oo Yy ) 1= |21 — 2] + |22 — 92| + oo+ |20 — ] + ...

It is well-defined, because only finitely many of x;,y; are non-zero.

THEOREM: Let M be a compact smooth manifold, {V,,¢; : V; — R™ i€ I}
be a locally finite atlas, and u; : M — [0, 1] a subordinate partition of unity.
Define v; := a(u;) and &, as above, and let

wi=]]: ®: M— R"xR"x..xR"c (R"1)!
I I times
be the corresponding product map. Then W is a homeomorphism to its
image.
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Embedding to R*° (cont.)

THEOREM: Let M be a compact smooth manifold, {V,,p; : V; — R"™ i€ I}
be a locally finite atlas, and u; : M — [0, 1] a subordinate partition of unity.
Define v; := a(u;) and @; as above, and let

wio=]]: ®: M— R"xR"x..xR"c (R"T1)!
I I times
be the corresponding product map. Then W is a homeomorphism to its
image.

Proof. Step 1: W is injective by construction. To prove that it is a home-
omorphism, it suffices to check that an image of an open set U is open in
W (M), for each U C W;, for some open cover {W;}

Step 2: However, the set W(W;) is determined by v;(z) = 1, that is, by
®;(2)p+1 = 1, where ®;(2),,41 is the last coordinate of ®;(z). Therefore, W
maps W; to an open subset of W(M).

Step 3: Since ®;|3. (restriction to a closure) is a continuous, bijective map
from a compact, it's a homeomorphism. Therefore, an image of any open
subset U C W; is open in W(W;), which is open in W (M) as follows from
Step 2. m

13



Differential geometry, lecture 2 M. Verbitsky

Measure O subsets and Sard’s theorem

DEFINITION: A subset Z C R™ has measure zero if, for every € > 0, there
exists a countable cover of Z by open balls U; such that >, VolU,; < e.

DEFINITION: A subset Z C M of a manifold M has measure 0O if intersec-
tion of M with each chart U; — R"™ has measure O.

Properties of measure 0 subsets.

A countable union of measure 0 subsets has measure 0.

A measure O subset Z C M satisfies (M\Z) NU # @ for any non-empty
open subset U C M.

THEOREM: (a special case of Sard’s Lemma) Let f: M — N be a
smooth map of manifolds, dimM < dimN. Then f(M) has measure zero
in N.

EXERCISE: Prove it.
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Whitney’s theorem (with a bound on dimension): strategy of the proof

THEOREM: Let M be a smooth n-manifold. Then M admits a closed
embedding to R2"+2,

Strategy of the proof:

1. M is embedded to R*°.

2. We find a linear projection R® - R27t2 sych that =], is a closed
embedding of manifolds.

LEMMA: Let M C R! be a subset, and = : R — RY a linear projection.
Consider the set W of all vectors R(z —y), where x,y € M are distinct points.
Then x|,; is injective if and only if kerrNW = 0.

Proof:: «|ps is not injective if and only if 7(x) = n(y), which is equivalent to

m(zr—y)=0. =
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Whitney’'s theorem: injectivity of projections

REMARK: Let M c R! be a submanifold, and W c R! the set of all vectors
R(z—vy), where xz,y € M are distinct points. Then W is an image of a 2m+1-
dimensional manifold, hence (by Sard’s Lemma) for any projection of R!
to a (2m + 2)-dimensional space, image of W has measure O.

COROLLARY: Let M c R! be an m-dimensional submanifold, and S c R{
a maximal linear subspace not intersecting W. Then the projection of W
to R!/S is surjective.

Proof:: Suppose it's not surjective: v ¢ S. Then S @ Rwv satisfies assumptions
of lemma, hence M — R!/(S 4 Rv) is also injective. =

THEOREM: Let M be a smooth n-manifold, M — RI an embedding con-
structed earlier. Then there exists a projection = : R! — R2"*T2 which is
injective on M.

Proof:: Let S be the maximal linear subspace such that the restriction of
m: Rl — R!/S to M is injective. Then the 2m + 1-dimensional manifold W
surjects to RY/S, hence dimR?/S < 2m + 1 by Sard’s lemma. =
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Tangent space to an embedded manifold

DEFINITION: Let M — R™ be a smooth m-submanifold. The tangent
plane at p € M is the plane in R"™ tangent to M (i.e, the plane lying in the
image of the differential given in local coordinates). A tangent vector is an
arbitrary vector in this plane with the origin at p. The space of all tangent
vectors at p is denoted by TpM. Given a metric on R"™, we can define the
space of unit tangent vectors S™ 1M as the set of all pairs (p,v), where
peE M, velIpM, and |v| = 1.

REMARK: S™ 1)/ is a smooth manifold, projected to M with fibers isomor-
phic to m — 1-spheres, hence S 1M\ is (2m — 1)-dimensional.

LEMMA: Let M C R! be a subset, and = : R! —s R’ a linear projection.
Consider the set W’ of all vectors Rt, where t € T,M Then the differential
D[y is injective if and only if kermrNW/ = 0. m

Now the above argument is repeated: we take a maximal space S D R such
that the restriction of =« : R[—>R[/S to M is injective and has injective
differential, and the projection of W U W’ to R!/S has to be surjective. How-
ever, W' is an image of an 2m-dimensional manifold Sm—1pr x R, hence the
projection of WUW’ to IR%I/S can be surjective only if dim RI/S < 2m—+ 2.

This proves Whitney’'s theorem.
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