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Complex structure on vector spaces

DEFINITION: Let V be a vector spaceover R, and I : V — V an automor-
phism which satisfies I = —Idy,. Such an automorphism is called a complex
structure operator on V.

We extend the action of 7 on the tensor spaces VRV X..QVRV*QV*®...Q
V* by multiplicativity: I1(v1®...Qw1Q®...Qwp) = [(v1) Q... [(w1) ®...Q I (wn).

Trivial observations:
1. The eigenvalues «; of I are ++/—1. Indeed, a? = —1.

2. V admits an I-invariant, positive definite scalar product (‘“metric”)
g. Take any metric gg, and let g := go + 1(90).

3. I is orthogonal for such g.
Indeed, g(Iz, Iy) = go(z,y) + g0z, Iy) = g(x,y).

4. I diagonalizable over C. Indeed, any orthogonal matrix is diagonalizable.
2



Riemann surfacees, lecture 1 M. Verbitsky

Hermitian structures
5. There are as many v —1-eigenvalues as there are —/—1-eigenvalues.

Denote by v the real structure operator, v(3 \w;) = 3 \w;, where w; € V is
a basis. Then v(I(z)) = I(v(2)), that is, I is real. For any v/—1 -eigenvector
w, one has I(v(w)) = v(I(w)) = v(v/-1w) = —v/—1 w, hence v exchanges
v—1 -eigenvectors and —/—1 -eigenvectors.

DEFINITION: An I-invariant positive definite scalar product on (V,I) is
called an Hermitian metric, and (V,1,g) — an Hermitian space.

REMARK: Let I be a complex structure operator on a real vector space
V, and g — a Hermitian metric. Then the bilinear form w(z,y) = g(x, Iy)
is skew-symmetric. Indeed, w(z,y) = g(z,Iy) = g(Iz, [%y) = —g(Iz,y) =
—w(y, ).

DEFINITION: A skew-symmetric form w(x,vy) is called an Hermitian form
on (V,I).

REMARK: In the triple I,g,w, each element can recovered from the other

two.
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The Grassmann algebra

DEFINITION: Let V be a vector space. Denote by A'V the space of an-
tisymmetric polylinear i-forms on V*, and let A*V = @A'WV. Denote by
T® the algebra of all polylinear i-forms on V* (“tensor algebra’), and let
Alt : T®'V — A'V be the antisymmetrization,

1 ~
Alt(n) (@1, zi) == > (=1)7n(2oy, ..., To;)
7! cEY;

where 2_; is the group of permutations, and ¢ = 1 for odd permutations, and
O for even. Consider the multiplicative operation ( “wedge-product”) on A*V,
denoted by n Av := Alt(n® v). The space A*V with this operation is called
the Grassmann algebra.

REMARK: It is an algebra of anti-commutative polynomials.
Properties of Grassmann algebra:
1. dim AV = (9TV), dim A*Y = 2dimV,

2. A (VW) = A (V) @ A*(W).
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The Hodge decomposition in linear algebra

DEFINITION: Let (V,I) be a space equipped with a complex structure.
The Hodge decomposition V @i C := V1.0 ¢ V0.1 is defined in such a way
that V1.0 is a /=1 -eigenspace of I, and V%1 a —/=1 -eigenspace.

REMARK: Let Vg ;= V ®r C. The Grassmann algebra of skew-symmetric
forms A"Vp := AgV ®gr C' admits a decomposition

ANVe= @ AvEOgaAvOl
ptq=n
We denote APV1.0 @ AIVOL by APV . The resulting decomposition A"V =
Dptg=n NP4V is called the Hodge decomposition of the Grassmann al-
gebra.

REMARK: The operator I induces U(1)-action on V by the formula p(t)(v) =
cost-v 4+ sint-I(v). We extend this action on the tensor spaces by mupti-
plicativity.
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U(1)-representations and the weight decomposition

REMARK: Any complex representation W of U(1) is written as a sum
of 1-dimensional representations W;(p), with U(1) acting on each W;(p)
as p(t)(v) = e\/—_lpt(v). The 1-dimensional representations are called weight
p representations of U(1).

DEFINITION: A weight decomposition of a U(1)-representation W is a de-
composition W = WP, where each WP = ¢,W;(p) is a sum of 1-dimensional
representations of weight p.

REMARK: The Hodge decomposition A"V = @4 =, APV is a weight
decomposition, with A9V being a weight p — g-component of A"V.

REMARK: VPP is the space of U(1)-invariant vectors in A2PV.

Further on, TM is the tangent bundle on a manifold, and A‘M the space
of differential -forms. It is a Grassmann algebra on T'M.
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Vector fields

DEFINITION: Let X be the vector field on a manifold M, and f a function.
Denote by Lieyx f the derivatiive of f along X.

DEFINITION: A derivation on a commutative ring is a map R i> R
satisfying the Leibniz identity d(xy) = d(z)y + xd(y).

THEOREM: Each derivation of the ring C°°M of smooth functions on M is
given by a vector field X; this correspondence is bijective.

REMARK: This can be used as a definition of a vector field.

EXERCISE: Prove that a commutator of two derivations is again a
derivation.

REMARK: Vector fields are the same as derivations of C°°M. This allows
us to define the commutator of two vector fields as the commutator of
the corresponding derivations.

DEFINITION: Denote by T'M the bundle of vector fields, and by ALM or
T* the dual bundle, called the bundle of 1-forms. For any f € C°°M, the
operation X — Liex f is linear as a function of X, hence it defines a section
of T*M. We denote this section df, and call it the differential of f.
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De Rham algebra

DEFINITION: Let A*M denote the vector bundle with the fiber A*T;M
at ¢ € M (A*T'*M is the Grassman algebra of the cotangent space T;M).
The sections of A*M are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C°°M-linear; the space AN*M
of all differential forms is called the de Rham algebra.

REMARK: NOM = C>®M.

THEOdREM: There exists a unique operator C°M -4 Alpr -4 A2p -9
A3M -5 ... satisfying the following properties

1. On functions, d is equal to the differential.

2. d2=0

3. dinAE) =dm) ANE+ (=1 Ad(€), where 7 = 0 where n € A% M is an even
form, and n € \2T1\/ is odd.

DEFINITION: The operator d is called de Rham differential.
EXERCISE: Prove it.

DEFINITION: A form n is called closed if dnp = 0, exact if n € imd. The

group &< is called de Rham cohomology of M.
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Sheaves

DEFINITION: A presheaf of functions on a topological space M is a
collection of subrings F(U) C C(U) in the ring C(U) of all functions on U, for
each open subset U C M, such that the restriction of every v € F(U) to an
open subset Uy C U belongs to F(Uy).

DEFINITION: A presheaf of functions F is called a sheaf of functions if
these subrings satisfy the following condition. Let {U;} be a cover of an open
subset U C M (possibly infinite) and f; € F(U;) a family of functions defined
on the open sets of the cover and compatible on the pairwise intersections:

filUiﬂUj — fleiﬂUj
for every pair of members of the cover. Then there exists f ¢ F(U) such
that f; is the restriction of f to U, for all :.
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Sheaves and presheaves: examples

Examples of sheaves:

* Space of continuous functions

* Space of smooth functions, any differentiability class
* Space of real analytic functions

Examples of presheaves which are not sheaves:

* Space of constant functions (why?)

* Space of bounded functions (why?)
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Ringed spaces

A ringed space (M, F) is a topological space equipped with a sheaf of func-
tions. A morphism (M, F) Y, (N, F") of ringed spaces is a continuous map
M L N such that, for every open subset U C N and every function f € F(U),
the function v*f := f o W belongs to the ring ]—"(\U—l(U)). An isomorphism
of ringed spaces is a homeomorphism W such that W and w1 are morphisms
of ringed spaces.

EXAMPLE: Let M be a manifold of class C* and let C*(U) be the space of
functions of this class. Then C" is a sheaf of functions, and (M,C") is a
ringed space.

REMARK: Let f: X — Y be a smooth map of smooth manifolds. Since a

pullback f*u of a smooth function p € C°°(M) is smooth, a smooth map of
smooth manifolds defines a morphism of ringed spaces.
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Complex manifolds

DEFINITION: A holomorphic function on C" is a function f: C*"—C
such that df is complex linear, that is df € ALO(M).

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally
isomorphic to an open ball in C" with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to C"

and transition functions (being coordinate functions for one ball considered
in other coordinate system) are holomorphic.
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