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Complex structure on vector spaces

DEFINITION: Let V be a vector space over R, and I : V −→ V an automor-

phism which satisfies I2 = − IdV . Such an automorphism is called a complex

structure operator on V .

We extend the action of I on the tensor spaces V ⊗V ⊗...⊗V ⊗V ∗⊗V ∗⊗...⊗
V ∗ by multiplicativity: I(v1⊗...⊗w1⊗...⊗wn) = I(v1)⊗...⊗I(w1)⊗...⊗I(wn).

Trivial observations:

1. The eigenvalues αi of I are ±
√
−1 . Indeed, α2

i = −1.

2. V admits an I-invariant, positive definite scalar product (“metric”)

g. Take any metric g0, and let g := g0 + I(g0).

3. I is orthogonal for such g.

Indeed, g(Ix, Iy) = g0(x, y) + g0(Ix, Iy) = g(x, y).

4. I diagonalizable over C. Indeed, any orthogonal matrix is diagonalizable.
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Hermitian structures

5. There are as many
√
−1-eigenvalues as there are −

√
−1-eigenvalues.

Denote by ν the real structure operator, ν(
∑
λiwi) =

∑
λiwi, where wi ∈ V is

a basis. Then ν(I(z)) = I(ν(z)), that is, I is real. For any
√
−1 -eigenvector

w, one has I(ν(w)) = ν(I(w)) = ν(
√
−1 w) = −

√
−1 w, hence ν exchanges√

−1 -eigenvectors and −
√
−1 -eigenvectors.

DEFINITION: An I-invariant positive definite scalar product on (V, I) is
called an Hermitian metric, and (V, I, g) – an Hermitian space.

REMARK: Let I be a complex structure operator on a real vector space
V , and g – a Hermitian metric. Then the bilinear form ω(x, y) := g(x, Iy)
is skew-symmetric. Indeed, ω(x, y) = g(x, Iy) = g(Ix, I2y) = −g(Ix, y) =
−ω(y, x).

DEFINITION: A skew-symmetric form ω(x, y) is called an Hermitian form
on (V, I).

REMARK: In the triple I, g, ω, each element can recovered from the other
two.
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The Grassmann algebra

DEFINITION: Let V be a vector space. Denote by ΛiV the space of an-

tisymmetric polylinear i-forms on V ∗, and let Λ∗V :=
⊕

ΛiV . Denote by

T⊗iV the algebra of all polylinear i-forms on V ∗ (“tensor algebra”), and let

Alt : T⊗iV −→ ΛiV be the antisymmetrization,

Alt(η)(x1, ..., xi) :=
1

i!

∑
σ∈Σi

(−1)σ̃η(xσ1, ..., xσi)

where Σi is the group of permutations, and σ̃ = 1 for odd permutations, and

0 for even. Consider the multiplicative operation (“wedge-product”) on Λ∗V ,

denoted by η ∧ ν := Alt(η ⊗ ν). The space Λ∗V with this operation is called

the Grassmann algebra.

REMARK: It is an algebra of anti-commutative polynomials.

Properties of Grassmann algebra:

1. dim ΛiV :=
(

dimV
i

)
, dim Λ∗V = 2dimV .

2. Λ∗(V ⊕W ) = Λ∗(V )⊗ Λ∗(W ).
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The Hodge decomposition in linear algebra

DEFINITION: Let (V, I) be a space equipped with a complex structure.

The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is defined in such a way

that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -eigenspace.

REMARK: Let VC := V ⊗R C. The Grassmann algebra of skew-symmetric

forms ΛnVC := ΛnRV ⊗R C admits a decomposition

ΛnVC =
⊕

p+q=n

ΛpV 1,0 ⊗ ΛqV 0,1

We denote ΛpV 1,0 ⊗ ΛqV 0,1 by Λp,qV . The resulting decomposition ΛnVC =⊕
p+q=nΛp,qV is called the Hodge decomposition of the Grassmann al-

gebra.

REMARK: The operator I induces U(1)-action on V by the formula ρ(t)(v) =

cos t · v + sin t · I(v). We extend this action on the tensor spaces by mupti-

plicativity.
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U(1)-representations and the weight decomposition

REMARK: Any complex representation W of U(1) is written as a sum

of 1-dimensional representations Wi(p), with U(1) acting on each Wi(p)

as ρ(t)(v) = e
√
−1 pt(v). The 1-dimensional representations are called weight

p representations of U(1).

DEFINITION: A weight decomposition of a U(1)-representation W is a de-

composition W = ⊕W p, where each W p = ⊕iWi(p) is a sum of 1-dimensional

representations of weight p.

REMARK: The Hodge decomposition ΛnVC =
⊕
p+q=nΛp,qV is a weight

decomposition, with Λp,qV being a weight p− q-component of ΛnVC.

REMARK: V p,p is the space of U(1)-invariant vectors in Λ2pV .

Further on, TM is the tangent bundle on a manifold, and ΛiM the space

of differential i-forms. It is a Grassmann algebra on TM .
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Vector fields

DEFINITION: Let X be the vector field on a manifold M , and f a function.
Denote by LieX f the derivatiive of f along X.

DEFINITION: A derivation on a commutative ring is a map R
d−→ R

satisfying the Leibniz identity d(xy) = d(x)y + xd(y).

THEOREM: Each derivation of the ring C∞M of smooth functions on M is
given by a vector field X; this correspondence is bijective.

REMARK: This can be used as a definition of a vector field.

EXERCISE: Prove that a commutator of two derivations is again a
derivation.

REMARK: Vector fields are the same as derivations of C∞M . This allows
us to define the commutator of two vector fields as the commutator of
the corresponding derivations.

DEFINITION: Denote by TM the bundle of vector fields, and by Λ1M or
T ∗ the dual bundle, called the bundle of 1-forms. For any f ∈ C∞M , the
operation X −→ LieX f is linear as a function of X, hence it defines a section
of T ∗M . We denote this section df , and call it the differential of f .
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De Rham algebra

DEFINITION: Let Λ∗M denote the vector bundle with the fiber Λ∗T ∗xM
at x ∈ M (Λ∗T ∗M is the Grassman algebra of the cotangent space T ∗xM).
The sections of ΛiM are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C∞M-linear; the space Λ∗M
of all differential forms is called the de Rham algebra.

REMARK: Λ0M = C∞M .

THEOREM: There exists a unique operator C∞M d−→ Λ1M
d−→ Λ2M

d−→
Λ3M

d−→ ... satisfying the following properties

1. On functions, d is equal to the differential.
2. d2 = 0
3. d(η ∧ ξ) = d(η)∧ ξ+ (−1)η̃η ∧ d(ξ), where η̃ = 0 where η ∈ λ2iM is an even
form, and η ∈ λ2i+1M is odd.

DEFINITION: The operator d is called de Rham differential.

EXERCISE: Prove it.

DEFINITION: A form η is called closed if dη = 0, exact if η ∈ im d. The
group ker d

im d is called de Rham cohomology of M .
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Sheaves

DEFINITION: A presheaf of functions on a topological space M is a

collection of subrings F(U) ⊂ C(U) in the ring C(U) of all functions on U , for

each open subset U ⊂ M , such that the restriction of every γ ∈ F(U) to an

open subset U1 ⊂ U belongs to F(U1).

DEFINITION: A presheaf of functions F is called a sheaf of functions if

these subrings satisfy the following condition. Let {Ui} be a cover of an open

subset U ⊂ M (possibly infinite) and fi ∈ F(Ui) a family of functions defined

on the open sets of the cover and compatible on the pairwise intersections:

fi|Ui∩Uj = fj|Ui∩Uj
for every pair of members of the cover. Then there exists f ∈ F(U) such

that fi is the restriction of f to Ui for all i.
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Sheaves and presheaves: examples

Examples of sheaves:

* Space of continuous functions

* Space of smooth functions, any differentiability class

* Space of real analytic functions

Examples of presheaves which are not sheaves:

* Space of constant functions (why?)

* Space of bounded functions (why?)
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Ringed spaces

A ringed space (M,F) is a topological space equipped with a sheaf of func-

tions. A morphism (M,F)
Ψ−→ (N,F ′) of ringed spaces is a continuous map

M
Ψ−→ N such that, for every open subset U ⊂ N and every function f ∈ F ′(U),

the function ψ∗f := f ◦Ψ belongs to the ring F
(
Ψ−1(U)

)
. An isomorphism

of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ−1 are morphisms

of ringed spaces.

EXAMPLE: Let M be a manifold of class Ci and let Ci(U) be the space of

functions of this class. Then Ci is a sheaf of functions, and (M,Ci) is a

ringed space.

REMARK: Let f : X −→ Y be a smooth map of smooth manifolds. Since a

pullback f∗µ of a smooth function µ ∈ C∞(M) is smooth, a smooth map of

smooth manifolds defines a morphism of ringed spaces.
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Complex manifolds

DEFINITION: A holomorphic function on Cn is a function f : Cn −→ C
such that df is complex linear, that is df ∈ Λ1,0(M).

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally

isomorphic to an open ball in Cn with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to Cn

and transition functions (being coordinate functions for one ball considered

in other coordinate system) are holomorphic.
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