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The Grassmann algebra (reminder)

DEFINITION: Let V be a vector space. Denote by A'V the space of an-
tisymmetric polylinear i-forms on V*, and let A*V = @A'WV. Denote by
T® the algebra of all polylinear i-forms on V* (“tensor algebra’), and let
Alt : T®'V — A'V be the antisymmetrization,

1 ~
Alt(n) (@1, zi) == > (=1)7n(2oy, ..., To;)
7! cEY;

where 2_; is the group of permutations, and ¢ = 1 for odd permutations, and
O for even. Consider the multiplicative operation ( “wedge-product”) on A*V,
denoted by n Av := Alt(n® v). The space A*V with this operation is called
the Grassmann algebra.

REMARK: It is an algebra of anti-commutative polynomials.
Properties of Grassmann algebra:
1. dim AV = (9TV), dim A*Y = 2dimV,

2. A (VW) = A (V) @ A*(W).
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De Rham algebra (reminder)

DEFINITION: Let A*M denote the vector bundle with the fiber A*T;M
at ¢ € M (A*T'*M is the Grassman algebra of the cotangent space T;M).
The sections of A'!M are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C°°M-linear; the space AN*M
of all differential forms is called the de Rham algebra.

THEOREM: There exists a unique operator C°M —% Alam -4 A2y -4
ASM -4, .. satisfying the following properties

1. On functions, d is equal to the differential.

2. d2=0

3. dinnE) =dm) ANE+ (=1 Ad(€), where 77 = 0 where n € A% M is an even
form, and n € A2T1\/ is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form n is called closed if dp = 0, exact if n € imd. The

group % is called de Rham cohomology of M.

Stokes’ theorem: Let n be n — 1-form on n-manifold M with a boundary
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The Hodge decomposition in linear algebra (reminder)

DEFINITION: Let V be a vector space over R, and I : V — V an automor-
phism which satisfies 12 = —Idy,. Such an automorphism is called a complex
structure operator on V.

We extend the action of 7 on the tensor spaces VRV X..QVRV*QV*®...Q
V* by multiplicativity: (11 ®...Quw1®...Qwy) = [(v1)®...0I(w1)®...Q I (wn).

DEFINITION: Let (V,I) be a space equipped with a complex structure.
The Hodge decomposition V @i C := V1.0 ¢ V0.1 is defined in such a way
that V1.0 is a /=1 -eigenspace of I, and V%1 a —/—1 -eigenspace.

REMARK: Let Vg ;= V ®r C. The Grassmann algebra of skew-symmetric
forms A"Vp := AgV ®gr C' admits a decomposition

NVe= @ NV AyO!
pt+g=n
We denote APV1.0 @ AIVOL by APV . The resulting decomposition A"V =
Dp1q=n NP4V is called the Hodge decomposition of the Grassmann al-

gebra.
4
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Vector fields (reminder)

DEFINITION: Let X be the vector field on a manifold M, and f a function.
Denote by Lieyx f the derivatiive of f along X.

DEFINITION: A derivation on a commutative ring is a map R i> R
satisfying the Leibniz identity d(xy) = d(z)y + xd(y).

THEOREM: Each derivation of the ring C°°M of smooth functions on M is
given by a vector field X; this correspondence is bijective.

REMARK: This can be used as a definition of a vector field.

EXERCISE: Prove that a commutator of two derivations is again a
derivation.

REMARK: Vector fields are the same as derivations of C°°M. This allows
us to define the commutator of two vector fields as the commutator of
the corresponding derivations.

DEFINITION: Denote by T'M the bundle of vector fields, and by ALM or
T* the dual bundle, called the bundle of 1-forms. For any f € C°°M, the
operation X — Liex f is linear as a function of X, hence it defines a section
of T*M. We denote this section df, and call it the differential of f.
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Holomorphic functions

DEFINITION: Let I : TM — T M be an endomorphism of a tangent bundle
satisfying [2 = —1Id. Then I is called almost complex structure operator,
and the pair (M,I) an almost complex manifold.

EXAMPLE: M = C", with complex coordinates 2z, = z; + v/—1 y;, and
I(d/dx;) = d/dy;, 1(d/dy;) = —d/dx;.

DEFINITION: A function f: M — C on an almost complex manifold is
called holomorphic if df € ALO(M).

REMARK: For some almost complex manifolds, there are no holomorphic
functions at all, even locally. Example: S® with a certain canonical (Go-
invariant) complex structure.
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Holomorphic functions on C"

THEOREM: Let f: M — C be a differentiable function on an open subset
M cC C", with the natural almost complex structure. Then the following
are equivalent.

(1) f is holomorphic.

(2) The differential df : TM — C, considered as a form on the vector space
T.M = T,C" = C" is C-linear.

(3) For any complex affine line L € C™, the restriction f|; = C is holomorphic
(complex analytic) as a function of one complex variable.

(4) f is expressed as a sum of Taylor series around any point (z1,...,2n) € M:

flzi+t, 204t zn+tn) = ) ail,...,intﬁlt?---t%”-
’lz]_,,'l/n,
(here we assume that the complex numbers ¢; satisfy |t;| < €, where £ depends
on f and M).

Proof: (1) and (2) are tautologically equivalent. Equivalence of (1) and (3)

is also clear, because a restriction of 8 € ALO(M) to a line is a (1,0)-form on

a line, and, conversely, if df is of type (1,0) on each complex line, it is of type

(1,0) on T'M, which is implied by the following linear-algebraic observation.
v’
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Holomorphic functions on C" (2)

THEOREM: Let f: M — C be a differentiable function on an open subset
M c C", with the natural almost complex structure. Then the following
are equivalent.

(1) f is holomorphic.

(2) The differential df : TM — C, considered as a form on the vector space
Te:M =T,C" =C" is C-linear.

(3) For any complex affine line L € C", the restriction f|; = C is holomorphic
(complex analytic) as a function of one complex variable.

(4) f is expressed as a sum of Taylor series around any point (z1,...,2n) € M.

LEMMA: Let n € V*® C be a complex-valued linear form on a vector space
(V,I) equipped with a complex structure. Then n € ALO(V) if and only if
its restriction to any /-invariant 2-dimensional subspace L belongs to
ALO(L).

EXERCISE: Prove it.

(4) clearly implies (2). It remains to show that (1) implies (4).
38
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Taylor decomposition from Cauchy formula

Taylor series decomposition on a line is implied by the Cauchy formula:
d
M2z _ ey =T 1(a).
oA zZ —a
where A C C is a disk, a € A any point, and z coordinate on C. Indeed, in
this case,

2my/=1f(a) = Y a' | F)GEHT

120

L L
because = = 271 Y5 0(az™ 1)
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Cauchy formula

Let's prove Cauchy formula, using Stokes' theorem. Since the space ALOC is
1-dimensional, df AN dz = 0 for any holomorphic function on C. This gives

CLAIM: A function on a disk A C C is holomorphic if and only if the form
n .= fdz Is closed (that is, satisfies dn =0). =

Now, let S be a radius e circle around a point a € A, Ac its interior, and

Ag := A\A.. Stokes’ theorem gives
0 — / d (f(z)dz> _ f(z)dz n f(2)dz
Ag

Se z—a ON zZ — a

y
<z — Qa

hence Cauchy formula would follow if we show that Iin% Js. f,(zzf)jz = 27v—1f(a).
E—r

Assuming for simplicity a = 0 and parametrizing the circle Sz by sev_lt, we

obtain

Gtz _ o fleeV 2D ooV Thy

Se z 0 ceV—1t
_ (2 f(eeVTh) V=Tt _ [T V=1t
= [ e i = [ (e T )T at

as e tends to 0, f(eeV~11) tends to f(0), and this integral goes to 2m/—1 f(0).
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Sheaves

DEFINITION: A presheaf of functions on a topological space M is a
collection of subrings F(U) C C(U) in the ring C(U) of all functions on U, for
each open subset U C M, such that the restriction of every v € F(U) to an
open subset Uy C U belongs to F(Uy).

DEFINITION: A presheaf of functions F is called a sheaf of functions if
these subrings satisfy the following condition. Let {U;} be a cover of an open
subset U C M (possibly infinite) and f; € F(U;) a family of functions defined
on the open sets of the cover and compatible on the pairwise intersections:

filUiﬂUj — fleiﬂUj
for every pair of members of the cover. Then there exists f ¢ F(U) such
that f; is the restriction of f to U, for all :.

11
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Sheaves and presheaves: examples

Examples of sheaves:

* Space of continuous functions

* Space of smooth functions, any differentiability class
* Space of real analytic functions

Examples of presheaves which are not sheaves:

* Space of constant functions (why?)

* Space of bounded functions (why?)

12

M. Verbitsky



Riemann surfacees, lecture 2 M. Verbitsky

Ringed spaces

A ringed space (M, F) is a topological space equipped with a sheaf of func-
tions. A morphism (M, F) Y, (N, F") of ringed spaces is a continuous map
M L N such that, for every open subset U C N and every function f € F(U),
the function v*f := f o W belongs to the ring ]—"(\U—l(U)). An isomorphism
of ringed spaces is a homeomorphism W such that W and w1 are morphisms
of ringed spaces.

EXAMPLE: Let M be a manifold of class C* and let C*(U) be the space of
functions of this class. Then C" is a sheaf of functions, and (M,C") is a
ringed space.

REMARK: Let f: X — Y be a smooth map of smooth manifolds. Since a

pullback f*u of a smooth function p € C°°(M) is smooth, a smooth map of
smooth manifolds defines a morphism of ringed spaces.

13
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Complex manifolds

DEFINITION: A holomorphic function on C" is a function f: C*"—C
such that df is complex linear, that is df € ALO(M).

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally
isomorphic to an open ball in C" with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to C"

and transition functions (being coordinate functions for one ball considered
in other coordinate system) are holomorphic.

14
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Complex manifolds and almost complex manifolds

DEFINITION: Standard almost complex structure is I(d/dx;) = d/dy;,
I(d/dy;) = —d/dx; on C"™ with complex coordinates z;, = x; + vV—1 y;.

DEFINITION: A map V: (M,I)— (N,J) from an almost complex mani-
fold to an almost complex manifold is called holomorphic if W*(ALO(N)) ¢
ALO(AD).

REMARK: This is the same as dW being complex linear; for standard almost
complex structures, this is the same as the coordinate components of W
being holomorphic functions.

DEFINITION: A complex manifold is a manifold equipped with an at-
las with charts identified with open subsets of C" and transition functions
holomorphic.

15
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Integrability of almost complex structures

DEFINITION: An almost complex structure I on a manifold is called inte-
grable if any point of M has a neighbourhood U diffeomorphic to an open
subset of C", in such a way that the almost complex structure I is induced
by the standard one on U C C™.

CLAIM: Complex structure on a manifold M uniquely determines an
integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of
holomorphic functions O,;, and O, is determined by I as explained above. =

16
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Frobenius form

CLAIM: Let B C TM be a sub-bundle of a tangent bundle of a smooth
manifold. Given vector fiels X,Y € B, consider their commutator [X,Y], and
lets W(X,Y) € TM/B be the projection of [X,Y] to TM/B. Then W(X,Y)
iIs C>°(M)-linear in X, Y:

V(fX,Y)=W(X, fY) = fV(X,Y).

Proof: Leibnitz identity gives [X, fY] = f[X,Y] + X(f)Y, and the second
term belongs to B, hence does not influence the projection to TM/B. =

DEFINITION: This form is called the Frobenius form of the sub-bundle
B C TM. This bundle is called involutive, or integrable, or holonomic if
v = 0.

EXERCISE: Give an example of a non-integrable sub-bundlile.
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Formal integrability

DEFINITION: An almost complex structure I on (M,I) is called formally
integrable if [T1.0M, 71,91 ¢ 71,9, that is, if T1.9M is involutive.

DEFINITION: The Frobenius form W € A29M @ TM is called the Nijenhuis
tensor.

CLAIM: If a complex structure I on M is integrable, it is formally
integrable.

Proof: Locally, the bundle T19(M) is generated by d/dz;, where z; are com-
plex coordinates. These vector fields commute, hence satisfy [d/dzi,d/dzj] e
TL.O(M). This means that the Frobenius form vanishes. =

THEOREM: (Newlander-Nirenberg)
A complex structure I on M is integrable if and only if it is formally
integrable.

Proof: (real analytic case) next lecture.

REMARK: In dimension 1, formal integrability is automatic. Indeed,
71001 is 1-dimensional, hence all skew-symmetric 2-forms on T1:9M vanish.
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