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The Grassmann algebra (reminder)

DEFINITION: Let V be a vector space. Denote by ΛiV the space of an-

tisymmetric polylinear i-forms on V ∗, and let Λ∗V :=
⊕

ΛiV . Denote by

T⊗iV the algebra of all polylinear i-forms on V ∗ (“tensor algebra”), and let

Alt : T⊗iV −→ ΛiV be the antisymmetrization,

Alt(η)(x1, ..., xi) :=
1

i!

∑
σ∈Σi

(−1)σ̃η(xσ1, ..., xσi)

where Σi is the group of permutations, and σ̃ = 1 for odd permutations, and

0 for even. Consider the multiplicative operation (“wedge-product”) on Λ∗V ,

denoted by η ∧ ν := Alt(η ⊗ ν). The space Λ∗V with this operation is called

the Grassmann algebra.

REMARK: It is an algebra of anti-commutative polynomials.

Properties of Grassmann algebra:

1. dim ΛiV :=
(

dimV
i

)
, dim Λ∗V = 2dimV .

2. Λ∗(V ⊕W ) = Λ∗(V )⊗ Λ∗(W ).
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De Rham algebra (reminder)

DEFINITION: Let Λ∗M denote the vector bundle with the fiber Λ∗T ∗xM
at x ∈ M (Λ∗T ∗M is the Grassman algebra of the cotangent space T ∗xM).
The sections of ΛiM are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C∞M-linear; the space Λ∗M
of all differential forms is called the de Rham algebra.

THEOREM: There exists a unique operator C∞M d−→ Λ1M
d−→ Λ2M

d−→
Λ3M

d−→ ... satisfying the following properties

1. On functions, d is equal to the differential.
2. d2 = 0
3. d(η ∧ ξ) = d(η)∧ ξ+ (−1)η̃η ∧ d(ξ), where η̃ = 0 where η ∈ λ2iM is an even
form, and η ∈ λ2i+1M is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form η is called closed if dη = 0, exact if η ∈ im d. The
group ker d

im d is called de Rham cohomology of M .

Stokes’ theorem: Let η be n − 1-form on n-manifold M with a boundary
∂M . Then

∫
M dη =

∫
∂M η.
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The Hodge decomposition in linear algebra (reminder)

DEFINITION: Let V be a vector space over R, and I : V −→ V an automor-

phism which satisfies I2 = − IdV . Such an automorphism is called a complex

structure operator on V .

We extend the action of I on the tensor spaces V ⊗V ⊗...⊗V ⊗V ∗⊗V ∗⊗...⊗
V ∗ by multiplicativity: I(v1⊗...⊗w1⊗...⊗wn) = I(v1)⊗...⊗I(w1)⊗...⊗I(wn).

DEFINITION: Let (V, I) be a space equipped with a complex structure.

The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is defined in such a way

that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -eigenspace.

REMARK: Let VC := V ⊗R C. The Grassmann algebra of skew-symmetric

forms ΛnVC := ΛnRV ⊗R C admits a decomposition

ΛnVC =
⊕

p+q=n

ΛpV 1,0 ⊗ ΛqV 0,1

We denote ΛpV 1,0 ⊗ ΛqV 0,1 by Λp,qV . The resulting decomposition ΛnVC =⊕
p+q=nΛp,qV is called the Hodge decomposition of the Grassmann al-

gebra.
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Vector fields (reminder)

DEFINITION: Let X be the vector field on a manifold M , and f a function.
Denote by LieX f the derivatiive of f along X.

DEFINITION: A derivation on a commutative ring is a map R
d−→ R

satisfying the Leibniz identity d(xy) = d(x)y + xd(y).

THEOREM: Each derivation of the ring C∞M of smooth functions on M is
given by a vector field X; this correspondence is bijective.

REMARK: This can be used as a definition of a vector field.

EXERCISE: Prove that a commutator of two derivations is again a
derivation.

REMARK: Vector fields are the same as derivations of C∞M . This allows
us to define the commutator of two vector fields as the commutator of
the corresponding derivations.

DEFINITION: Denote by TM the bundle of vector fields, and by Λ1M or
T ∗ the dual bundle, called the bundle of 1-forms. For any f ∈ C∞M , the
operation X −→ LieX f is linear as a function of X, hence it defines a section
of T ∗M . We denote this section df , and call it the differential of f .
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Holomorphic functions

DEFINITION: Let I : TM −→ TM be an endomorphism of a tangent bundle

satisfying I2 = − Id. Then I is called almost complex structure operator,

and the pair (M, I) an almost complex manifold.

EXAMPLE: M = Cn, with complex coordinates zi = xi +
√
−1 yi, and

I(d/dxi) = d/dyi, I(d/dyi) = −d/dxi.

DEFINITION: A function f : M −→ C on an almost complex manifold is

called holomorphic if df ∈ Λ1,0(M).

REMARK: For some almost complex manifolds, there are no holomorphic

functions at all, even locally. Example: S6 with a certain canonical (G2-

invariant) complex structure.
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Holomorphic functions on Cn

THEOREM: Let f : M −→ C be a differentiable function on an open subset

M ⊂ Cn, with the natural almost complex structure. Then the following

are equivalent.

(1) f is holomorphic.

(2) The differential df : TM −→ C, considered as a form on the vector space

TxM = TxCn = Cn is C-linear.

(3) For any complex affine line L ∈ Cn, the restriction f |L = C is holomorphic

(complex analytic) as a function of one complex variable.

(4) f is expressed as a sum of Taylor series around any point (z1, ..., zn) ∈M :

f(z1 + t1, z2 + t2, ..., zn + tn) =
∑

i1,...,in

ai1,...,int
i1
1 t

i2
2 ...t

in
n .

(here we assume that the complex numbers ti satisfy |ti| < ε, where ε depends

on f and M).

Proof: (1) and (2) are tautologically equivalent. Equivalence of (1) and (3)

is also clear, because a restriction of θ ∈ Λ1,0(M) to a line is a (1,0)-form on

a line, and, conversely, if df is of type (1,0) on each complex line, it is of type

(1,0) on TM , which is implied by the following linear-algebraic observation.
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Holomorphic functions on Cn (2)

THEOREM: Let f : M −→ C be a differentiable function on an open subset

M ⊂ Cn, with the natural almost complex structure. Then the following

are equivalent.

(1) f is holomorphic.

(2) The differential df : TM −→ C, considered as a form on the vector space

TxM = TxCn = Cn is C-linear.

(3) For any complex affine line L ∈ Cn, the restriction f |L = C is holomorphic

(complex analytic) as a function of one complex variable.

(4) f is expressed as a sum of Taylor series around any point (z1, ..., zn) ∈M .

LEMMA: Let η ∈ V ∗ ⊗ C be a complex-valued linear form on a vector space

(V, I) equipped with a complex structure. Then η ∈ Λ1,0(V ) if and only if

its restriction to any I-invariant 2-dimensional subspace L belongs to

Λ1,0(L).

EXERCISE: Prove it.

(4) clearly implies (2). It remains to show that (1) implies (4).
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Taylor decomposition from Cauchy formula

Taylor series decomposition on a line is implied by the Cauchy formula:∫
∂∆

f(z)dz

z − a
= 2π

√
−1 f(a),

where ∆ ⊂ C is a disk, a ∈ ∆ any point, and z coordinate on C. Indeed, in

this case,

2π
√
−1 f(a) =

∑
i>0

ai
∫
∂∆

f(z)(z−1)i+1,

because 1
z−a = z−1∑

i>0(az−1)i.
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Cauchy formula

Let’s prove Cauchy formula, using Stokes’ theorem. Since the space Λ1,0C is
1-dimensional, df ∧ dz = 0 for any holomorphic function on C. This gives

CLAIM: A function on a disk ∆ ⊂ C is holomorphic if and only if the form
η := fdz is closed (that is, satisfies dη = 0).

Now, let Sε be a radius ε circle around a point a ∈ ∆, ∆ε its interior, and
∆0 := ∆\∆ε. Stokes’ theorem gives

0 =
∫

∆0

d

(
f(z)dz

z − a

)
= −

∫
Sε

f(z)dz

z − a
+
∫
∂∆

f(z)dz

z − a
,

hence Cauchy formula would follow if we show that lim
ε→0

∫
Sε

f(z)dz
z−a = 2π

√
−1f(a).

Assuming for simplicity a = 0 and parametrizing the circle Sε by εe
√
−1 t, we

obtain∫
Sε

f(z)dz

z
=
∫ 2π

0

f(εe
√
−1 t)

εe
√
−1 t

d(εe
√
−1 t) =

=
∫ 2π

0

f(εe
√
−1 t)

εe
√
−1 t

√
−1 εe

√
−1 tdt =

∫ 2π

0
f(εe

√
−1 t)

√
−1 dt

as ε tends to 0, f(εe
√
−1 t) tends to f(0), and this integral goes to 2π

√
−1f(0).
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Sheaves

DEFINITION: A presheaf of functions on a topological space M is a

collection of subrings F(U) ⊂ C(U) in the ring C(U) of all functions on U , for

each open subset U ⊂ M , such that the restriction of every γ ∈ F(U) to an

open subset U1 ⊂ U belongs to F(U1).

DEFINITION: A presheaf of functions F is called a sheaf of functions if

these subrings satisfy the following condition. Let {Ui} be a cover of an open

subset U ⊂ M (possibly infinite) and fi ∈ F(Ui) a family of functions defined

on the open sets of the cover and compatible on the pairwise intersections:

fi|Ui∩Uj = fj|Ui∩Uj
for every pair of members of the cover. Then there exists f ∈ F(U) such

that fi is the restriction of f to Ui for all i.
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Sheaves and presheaves: examples

Examples of sheaves:

* Space of continuous functions

* Space of smooth functions, any differentiability class

* Space of real analytic functions

Examples of presheaves which are not sheaves:

* Space of constant functions (why?)

* Space of bounded functions (why?)

12



Riemann surfacees, lecture 2 M. Verbitsky

Ringed spaces

A ringed space (M,F) is a topological space equipped with a sheaf of func-

tions. A morphism (M,F)
Ψ−→ (N,F ′) of ringed spaces is a continuous map

M
Ψ−→ N such that, for every open subset U ⊂ N and every function f ∈ F ′(U),

the function ψ∗f := f ◦Ψ belongs to the ring F
(
Ψ−1(U)

)
. An isomorphism

of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ−1 are morphisms

of ringed spaces.

EXAMPLE: Let M be a manifold of class Ci and let Ci(U) be the space of

functions of this class. Then Ci is a sheaf of functions, and (M,Ci) is a

ringed space.

REMARK: Let f : X −→ Y be a smooth map of smooth manifolds. Since a

pullback f∗µ of a smooth function µ ∈ C∞(M) is smooth, a smooth map of

smooth manifolds defines a morphism of ringed spaces.
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Complex manifolds

DEFINITION: A holomorphic function on Cn is a function f : Cn −→ C
such that df is complex linear, that is df ∈ Λ1,0(M).

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally

isomorphic to an open ball in Cn with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to Cn

and transition functions (being coordinate functions for one ball considered

in other coordinate system) are holomorphic.
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Complex manifolds and almost complex manifolds

DEFINITION: Standard almost complex structure is I(d/dxi) = d/dyi,

I(d/dyi) = −d/dxi on Cn with complex coordinates zi = xi +
√
−1 yi.

DEFINITION: A map Ψ : (M, I)−→ (N, J) from an almost complex mani-

fold to an almost complex manifold is called holomorphic if Ψ∗(Λ1,0(N)) ⊂
Λ1,0(M).

REMARK: This is the same as dΨ being complex linear; for standard almost

complex structures, this is the same as the coordinate components of Ψ

being holomorphic functions.

DEFINITION: A complex manifold is a manifold equipped with an at-

las with charts identified with open subsets of Cn and transition functions

holomorphic.
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Integrability of almost complex structures

DEFINITION: An almost complex structure I on a manifold is called inte-

grable if any point of M has a neighbourhood U diffeomorphic to an open

subset of Cn, in such a way that the almost complex structure I is induced

by the standard one on U ⊂ Cn.

CLAIM: Complex structure on a manifold M uniquely determines an

integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of

holomorphic functions OM , and OM is determined by I as explained above.
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Frobenius form

CLAIM: Let B ⊂ TM be a sub-bundle of a tangent bundle of a smooth

manifold. Given vector fiels X,Y ∈ B, consider their commutator [X,Y ], and

lets Ψ(X,Y ) ∈ TM/B be the projection of [X,Y ] to TM/B. Then Ψ(X,Y )

is C∞(M)-linear in X, Y :

Ψ(fX, Y ) = Ψ(X, fY ) = fΨ(X,Y ).

Proof: Leibnitz identity gives [X, fY ] = f [X,Y ] + X(f)Y , and the second

term belongs to B, hence does not influence the projection to TM/B.

DEFINITION: This form is called the Frobenius form of the sub-bundle

B ⊂ TM . This bundle is called involutive, or integrable, or holonomic if

Ψ = 0.

EXERCISE: Give an example of a non-integrable sub-bundle.
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Formal integrability

DEFINITION: An almost complex structure I on (M, I) is called formally
integrable if [T1,0M,T1,0] ⊂ T1,0, that is, if T1,0M is involutive.

DEFINITION: The Frobenius form Ψ ∈ Λ2,0M⊗TM is called the Nijenhuis
tensor.

CLAIM: If a complex structure I on M is integrable, it is formally
integrable.

Proof: Locally, the bundle T1,0(M) is generated by d/dzi, where zi are com-
plex coordinates. These vector fields commute, hence satisfy [d/dzi, d/dzj] ∈
T1,0(M). This means that the Frobenius form vanishes.

THEOREM: (Newlander-Nirenberg)
A complex structure I on M is integrable if and only if it is formally
integrable.

Proof: (real analytic case) next lecture.

REMARK: In dimension 1, formal integrability is automatic. Indeed,
T1,0M is 1-dimensional, hence all skew-symmetric 2-forms on T1,0M vanish.
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