Riemann surfaces

lecture 2

Misha Verbitsky

Université Libre de Bruxelles October 7, 2015

The Grassmann algebra (reminder)

DEFINITION: Let V be a vector space. Denote by $\Lambda^i V$ the space of antisymmetric polylinear *i*-forms on V^* , and let $\Lambda^* V := \bigoplus \Lambda^i V$. Denote by $T^{\otimes i}V$ the algebra of all polylinear *i*-forms on V^* ("tensor algebra"), and let Alt : $T^{\otimes i}V \longrightarrow \Lambda^i V$ be the antisymmetrization,

$$\mathsf{Alt}(\eta)(x_1,...,x_i) := \frac{1}{i!} \sum_{\sigma \in \Sigma_i} (-1)^{\tilde{\sigma}} \eta(x_{\sigma_1},...,x_{\sigma_i})$$

where Σ_i is the group of permutations, and $\tilde{\sigma} = 1$ for odd permutations, and 0 for even. Consider the multiplicative operation ("wedge-product") on Λ^*V , denoted by $\eta \wedge \nu := \operatorname{Alt}(\eta \otimes \nu)$. The space Λ^*V with this operation is called **the Grassmann algebra**.

REMARK: It is an algebra of anti-commutative polynomials.

Properties of Grassmann algebra:

1. dim
$$\Lambda^i V := \binom{\dim V}{i}$$
, dim $\Lambda^* V = 2^{\dim V}$.

2. $\Lambda^*(V \oplus W) = \Lambda^*(V) \otimes \Lambda^*(W)$.

De Rham algebra (reminder)

DEFINITION: Let Λ^*M denote the vector bundle with the fiber $\Lambda^*T_x^*M$ at $x \in M$ (Λ^*T^*M is the Grassman algebra of the cotangent space T_x^*M). The sections of $\Lambda^i M$ are called **differential** *i*-forms. The algebraic operation "wedge product" defined on differential forms is $C^{\infty}M$ -linear; the space Λ^*M of all differential forms is called **the de Rham algebra**.

THEOREM: There exists a unique operator $C^{\infty}M \xrightarrow{d} \wedge^{1}M \xrightarrow{d} \wedge^{2}M \xrightarrow{d} \wedge^{3}M \xrightarrow{d} \dots$ satisfying the following properties

- 1. On functions, d is equal to the differential.
- 2. $d^2 = 0$

3. $d(\eta \wedge \xi) = d(\eta) \wedge \xi + (-1)^{\tilde{\eta}} \eta \wedge d(\xi)$, where $\tilde{\eta} = 0$ where $\eta \in \lambda^{2i}M$ is an even form, and $\eta \in \lambda^{2i+1}M$ is odd.

DEFINITION: The operator *d* is called **de Rham differential**.

DEFINITION: A form η is called **closed** if $d\eta = 0$, **exact** if $\eta \in \text{im } d$. The group $\frac{\ker d}{\operatorname{im } d}$ is called **de Rham cohomology** of M.

Stokes' theorem: Let η be n - 1-form on n-manifold M with a boundary ∂M . Then $\int_M d\eta = \int_{\partial M} \eta$.

The Hodge decomposition in linear algebra (reminder)

DEFINITION: Let V be a vector space over \mathbb{R} , and $I: V \longrightarrow V$ an automorphism which satisfies $I^2 = -\operatorname{Id}_V$. Such an automorphism is called a complex structure operator on V.

We extend the action of I on the tensor spaces $V \otimes V \otimes ... \otimes V \otimes V^* \otimes V^* \otimes ... \otimes V^*$ by multiplicativity: $I(v_1 \otimes ... \otimes w_1 \otimes ... \otimes w_n) = I(v_1) \otimes ... \otimes I(w_1) \otimes ... \otimes I(w_n)$.

DEFINITION: Let (V, I) be a space equipped with a complex structure. **The Hodge decomposition** $V \otimes_{\mathbb{R}} \mathbb{C} := V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$ -eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$ -eigenspace.

REMARK: Let $V_{\mathbb{C}} := V \otimes_{\mathbb{R}} \mathbb{C}$. The Grassmann algebra of skew-symmetric forms $\Lambda^n V_{\mathbb{C}} := \Lambda^n_{\mathbb{R}} V \otimes_{\mathbb{R}} C$ admits a decomposition

$$\Lambda^n V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^p V^{1,0} \otimes \Lambda^q V^{0,1}$$

We denote $\Lambda^{p}V^{1,0} \otimes \Lambda^{q}V^{0,1}$ by $\Lambda^{p,q}V$. The resulting decomposition $\Lambda^{n}V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^{p,q}V$ is called **the Hodge decomposition of the Grassmann al-gebra**.

M. Verbitsky

Vector fields (reminder)

DEFINITION: Let X be the vector field on a manifold M, and f a function. Denote by $\text{Lie}_X f$ the derivative of f along X.

DEFINITION: A derivation on a commutative ring is a map $R \xrightarrow{d} R$ satisfying the Leibniz identity d(xy) = d(x)y + xd(y).

THEOREM: Each derivation of the ring $C^{\infty}M$ of smooth functions on M is given by a vector field X; this correspondence is bijective.

REMARK: This can be used as a definition of a vector field.

EXERCISE: Prove that a commutator of two derivations is again a derivation.

REMARK: Vector fields are the same as derivations of $C^{\infty}M$. This allows us to define the commutator of two vector fields as the commutator of the corresponding derivations.

DEFINITION: Denote by TM the bundle of vector fields, and by $\Lambda^1 M$ or T^* the dual bundle, called **the bundle of 1-forms**. For any $f \in C^{\infty}M$, the operation $X \longrightarrow \text{Lie}_X f$ is linear as a function of X, hence it defines a section of T^*M . We denote this section df, and call it **the differential** of f.

Holomorphic functions

DEFINITION: Let $I : TM \longrightarrow TM$ be an endomorphism of a tangent bundle satisfying $I^2 = -$ Id. Then I is called **almost complex structure operator**, and the pair (M, I) **an almost complex manifold**.

EXAMPLE: $M = \mathbb{C}^n$, with complex coordinates $z_i = x_i + \sqrt{-1} y_i$, and $I(d/dx_i) = d/dy_i$, $I(d/dy_i) = -d/dx_i$.

DEFINITION: A function $f : M \longrightarrow \mathbb{C}$ on an almost complex manifold is called **holomorphic** if $df \in \Lambda^{1,0}(M)$.

REMARK: For some almost complex manifolds, there are no holomorphic functions at all, even locally. Example: S^6 with a certain canonical (G_2 -invariant) complex structure.

Holomorphic functions on \mathbb{C}^n

THEOREM: Let $f: M \longrightarrow \mathbb{C}$ be a differentiable function on an open subset $M \subset \mathbb{C}^n$, with the natural almost complex structure. Then the following are equivalent.

(1) f is holomorphic.

(2) The differential $df : TM \longrightarrow \mathbb{C}$, considered as a form on the vector space $T_xM = T_x\mathbb{C}^n = \mathbb{C}^n$ is \mathbb{C} -linear.

(3) For any complex affine line $L \in \mathbb{C}^n$, the restriction $f|_L = \mathbb{C}$ is holomorphic (complex analytic) as a function of one complex variable.

(4) f is expressed as a sum of Taylor series around any point $(z_1, ..., z_n) \in M$:

$$f(z_1 + t_1, z_2 + t_2, ..., z_n + t_n) = \sum_{i_1, ..., i_n} a_{i_1, ..., i_n} t_1^{i_1} t_2^{i_2} ... t_n^{i_n}.$$

(here we assume that the complex numbers t_i satisfy $|t_i| < \varepsilon$, where ε depends on f and M).

Proof: (1) and (2) are tautologically equivalent. Equivalence of (1) and (3) is also clear, because a restriction of $\theta \in \Lambda^{1,0}(M)$ to a line is a (1,0)-form on a line, and, conversely, if df is of type (1,0) on each complex line, it is of type (1,0) on TM, which is implied by the following linear-algebraic observation.

Holomorphic functions on \mathbb{C}^n (2)

THEOREM: Let $f: M \longrightarrow \mathbb{C}$ be a differentiable function on an open subset $M \subset \mathbb{C}^n$, with the natural almost complex structure. Then the following are equivalent.

(1) f is holomorphic.

(2) The differential df: $TM \longrightarrow \mathbb{C}$, considered as a form on the vector space $T_xM = T_x\mathbb{C}^n = \mathbb{C}^n$ is \mathbb{C} -linear.

(3) For any complex affine line $L \in \mathbb{C}^n$, the restriction $f|_L = \mathbb{C}$ is holomorphic (complex analytic) as a function of one complex variable.

(4) f is expressed as a sum of Taylor series around any point $(z_1, ..., z_n) \in M$.

LEMMA: Let $\eta \in V^* \otimes \mathbb{C}$ be a complex-valued linear form on a vector space (V, I) equipped with a complex structure. Then $\eta \in \Lambda^{1,0}(V)$ if and only if its restriction to any *I*-invariant 2-dimensional subspace *L* belongs to $\Lambda^{1,0}(L)$.

EXERCISE: Prove it.

(4) clearly implies (2). It remains to show that (1) implies (4).

Taylor decomposition from Cauchy formula

Taylor series decomposition on a line is implied by the Cauchy formula:

$$\int_{\partial \Delta} \frac{f(z)dz}{z-a} = 2\pi\sqrt{-1} f(a),$$

where $\Delta \subset \mathbb{C}$ is a disk, $a \in \Delta$ any point, and z coordinate on \mathbb{C} . Indeed, in this case,

$$2\pi\sqrt{-1} f(a) = \sum_{i \ge 0} a^i \int_{\partial \Delta} f(z) (z^{-1})^{i+1},$$

because $\frac{1}{z-a} = z^{-1} \sum_{i \ge 0} (az^{-1})^i$.

Cauchy formula

Let's prove Cauchy formula, using Stokes' theorem. Since the space $\Lambda^{1,0}\mathbb{C}$ is 1-dimensional, $df \wedge dz = 0$ for any holomorphic function on \mathbb{C} . This gives

CLAIM: A function on a disk $\Delta \subset \mathbb{C}$ is holomorphic if and only if the form $\eta := fdz$ is closed (that is, satisfies $d\eta = 0$).

Now, let S_{ε} be a radius ε circle around a point $a \in \Delta$, Δ_{ε} its interior, and $\Delta_0 := \Delta \setminus \Delta_{\varepsilon}$. Stokes' theorem gives

$$0 = \int_{\Delta_0} d\left(\frac{f(z)dz}{z-a}\right) = -\int_{S_{\varepsilon}} \frac{f(z)dz}{z-a} + \int_{\partial\Delta} \frac{f(z)dz}{z-a},$$

hence Cauchy formula would follow if we show that $\lim_{\varepsilon \to 0} \int_{S_{\varepsilon}} \frac{f(z)dz}{z-a} = 2\pi \sqrt{-1} f(a)$.

Assuming for simplicity a = 0 and parametrizing the circle S_{ε} by $\varepsilon e^{\sqrt{-1}t}$, we obtain

$$\int_{S_{\varepsilon}} \frac{f(z)dz}{z} = \int_{0}^{2\pi} \frac{f(\varepsilon e^{\sqrt{-1}t})}{\varepsilon e^{\sqrt{-1}t}} d(\varepsilon e^{\sqrt{-1}t}) =$$
$$= \int_{0}^{2\pi} \frac{f(\varepsilon e^{\sqrt{-1}t})}{\varepsilon e^{\sqrt{-1}t}} \sqrt{-1} \varepsilon e^{\sqrt{-1}t} dt = \int_{0}^{2\pi} f(\varepsilon e^{\sqrt{-1}t}) \sqrt{-1} dt$$

as ε tends to 0, $f(\varepsilon e^{\sqrt{-1}t})$ tends to f(0), and this integral goes to $2\pi\sqrt{-1}f(0)$.

Sheaves

DEFINITION: A presheaf of functions on a topological space M is a collection of subrings $\mathcal{F}(U) \subset C(U)$ in the ring C(U) of all functions on U, for each open subset $U \subset M$, such that the restriction of every $\gamma \in \mathcal{F}(U)$ to an open subset $U_1 \subset U$ belongs to $\mathcal{F}(U_1)$.

DEFINITION: A presheaf of functions \mathcal{F} is called a sheaf of functions if these subrings satisfy the following condition. Let $\{U_i\}$ be a cover of an open subset $U \subset M$ (possibly infinite) and $f_i \in \mathcal{F}(U_i)$ a family of functions defined on the open sets of the cover and compatible on the pairwise intersections:

$$f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$$

for every pair of members of the cover. Then there exists $f \in \mathcal{F}(U)$ such that f_i is the restriction of f to U_i for all i.

Sheaves and presheaves: examples

Examples of sheaves:

- * Space of continuous functions
- * Space of smooth functions, any differentiability class
- * Space of real analytic functions

Examples of presheaves which are not sheaves:

- * Space of constant functions (why?)
- * Space of bounded functions (why?)

Ringed spaces

A ringed space (M, \mathcal{F}) is a topological space equipped with a sheaf of functions. A morphism $(M, \mathcal{F}) \xrightarrow{\Psi} (N, \mathcal{F}')$ of ringed spaces is a continuous map $M \xrightarrow{\Psi} N$ such that, for every open subset $U \subset N$ and every function $f \in \mathcal{F}'(U)$, the function $\psi^* f := f \circ \Psi$ belongs to the ring $\mathcal{F}(\Psi^{-1}(U))$. An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ^{-1} are morphisms of ringed spaces.

EXAMPLE: Let M be a manifold of class C^i and let $C^i(U)$ be the space of functions of this class. Then C^i is a sheaf of functions, and (M, C^i) is a ringed space.

REMARK: Let $f: X \longrightarrow Y$ be a smooth map of smooth manifolds. Since a pullback $f^*\mu$ of a smooth function $\mu \in C^{\infty}(M)$ is smooth, a smooth map of smooth manifolds defines a morphism of ringed spaces.

Complex manifolds

DEFINITION: A holomorphic function on \mathbb{C}^n is a function $f : \mathbb{C}^n \longrightarrow \mathbb{C}$ such that df is complex linear, that is $df \in \Lambda^{1,0}(M)$.

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally isomorphic to an open ball in \mathbb{C}^n with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to \mathbb{C}^n and transition functions (being coordinate functions for one ball considered in other coordinate system) are holomorphic.

Complex manifolds and almost complex manifolds

DEFINITION: Standard almost complex structure is $I(d/dx_i) = d/dy_i$, $I(d/dy_i) = -d/dx_i$ on \mathbb{C}^n with complex coordinates $z_i = x_i + \sqrt{-1} y_i$.

DEFINITION: A map Ψ : $(M, I) \longrightarrow (N, J)$ from an almost complex manifold to an almost complex manifold is called **holomorphic** if $\Psi^*(\Lambda^{1,0}(N)) \subset \Lambda^{1,0}(M)$.

REMARK: This is the same as $d\Psi$ being complex linear; for standard almost complex structures, **this is the same as the coordinate components of** Ψ **being holomorphic functions.**

DEFINITION: A complex manifold is a manifold equipped with an atlas with charts identified with open subsets of \mathbb{C}^n and transition functions holomorphic.

Integrability of almost complex structures

DEFINITION: An almost complex structure I on a manifold is called **integrable** if any point of M has a neighbourhood U diffeomorphic to an open subset of \mathbb{C}^n , in such a way that the almost complex structure I is induced by the standard one on $U \subset \mathbb{C}^n$.

CLAIM: Complex structure on a manifold M uniquely determines an integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of holomorphic functions \mathcal{O}_M , and \mathcal{O}_M is determined by I as explained above.

Frobenius form

CLAIM: Let $B \subset TM$ be a sub-bundle of a tangent bundle of a smooth manifold. Given vector fiels $X, Y \in B$, consider their commutator [X, Y], and lets $\Psi(X, Y) \in TM/B$ be the projection of [X, Y] to TM/B. Then $\Psi(X, Y)$ is $C^{\infty}(M)$ -linear in X, Y:

$$\Psi(fX,Y) = \Psi(X,fY) = f\Psi(X,Y).$$

Proof: Leibnitz identity gives [X, fY] = f[X, Y] + X(f)Y, and the second term belongs to B, hence does not influence the projection to TM/B.

DEFINITION: This form is called **the Frobenius form** of the sub-bundle $B \subset TM$. This bundle is called **involutive**, or **integrable**, or **holonomic** if $\Psi = 0$.

EXERCISE: Give an example of a non-integrable sub-bundle.

Formal integrability

DEFINITION: An almost complex structure I on (M, I) is called **formally integrable** if $[T^{1,0}M, T^{1,0}] \subset T^{1,0}$, that is, if $T^{1,0}M$ is involutive.

DEFINITION: The Frobenius form $\Psi \in \Lambda^{2,0} M \otimes TM$ is called **the Nijenhuis tensor**.

CLAIM: If a complex structure I on M is integrable, it is formally integrable.

Proof: Locally, the bundle $T^{1,0}(M)$ is generated by d/dz_i , where z_i are complex coordinates. These vector fields commute, hence satisfy $[d/dz_i, d/dz_j] \in T^{1,0}(M)$. This means that the Frobenius form vanishes.

THEOREM: (Newlander-Nirenberg)

A complex structure I on M is integrable if and only if it is formally integrable.

Proof: (real analytic case) next lecture.

REMARK: In dimension 1, formal integrability is automatic. Indeed, $T^{1,0}M$ is 1-dimensional, hence all skew-symmetric 2-forms on $T^{1,0}M$ vanish.