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De Rham algebra (reminder)

DEFINITION: Let Λ∗M denote the vector bundle with the fiber Λ∗T ∗xM
at x ∈ M (Λ∗T ∗M is the Grassman algebra of the cotangent space T ∗xM).
The sections of ΛiM are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C∞M-linear; the space Λ∗M
of all differential forms is called the de Rham algebra.

THEOREM: There exists a unique operator C∞M d−→ Λ1M
d−→ Λ2M

d−→
Λ3M

d−→ ... satisfying the following properties

1. On functions, d is equal to the differential.
2. d2 = 0
3. d(η ∧ ξ) = d(η)∧ ξ+ (−1)η̃η ∧ d(ξ), where η̃ = 0 where η ∈ λ2iM is an even
form, and η ∈ λ2i+1M is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form η is called closed if dη = 0, exact if η ∈ im d. The
group ker d

im d is called de Rham cohomology of M .

Stokes’ theorem: Let η be n − 1-form on n-manifold M with a boundary
∂M . Then

∫
M dη =

∫
∂M η.
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The Hodge decomposition in linear algebra (reminder)

DEFINITION: Let V be a vector space over R, and I : V −→ V an automor-

phism which satisfies I2 = − IdV . Such an automorphism is called a complex

structure operator on V .

We extend the action of I on the tensor spaces V ⊗V ⊗...⊗V ⊗V ∗⊗V ∗⊗...⊗
V ∗ by multiplicativity: I(v1⊗...⊗w1⊗...⊗wn) = I(v1)⊗...⊗I(w1)⊗...⊗I(wn).

DEFINITION: Let (V, I) be a space equipped with a complex structure.

The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is defined in such a way

that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -eigenspace.

REMARK: Let VC := V ⊗R C. The Grassmann algebra of skew-symmetric

forms ΛnVC := ΛnRV ⊗R C admits a decomposition

ΛnVC =
⊕

p+q=n

ΛpV 1,0 ⊗ ΛqV 0,1

We denote ΛpV 1,0 ⊗ ΛqV 0,1 by Λp,qV . The resulting decomposition ΛnVC =⊕
p+q=nΛp,qV is called the Hodge decomposition of the Grassmann al-

gebra.
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Holomorphic functions (reminder)

DEFINITION: Let I : TM −→ TM be an endomorphism of a tangent bundle

satisfying I2 = − Id. Then I is called almost complex structure operator,

and the pair (M, I) an almost complex manifold.

EXAMPLE: M = Cn, with complex coordinates zi = xi +
√
−1 yi, and

I(d/dxi) = d/dyi, I(d/dyi) = −d/dxi.

DEFINITION: A function f : M −→ C on an almost complex manifold is

called holomorphic if df ∈ Λ1,0(M).

REMARK: For some almost complex manifolds, there are no holomorphic

functions at all, even locally. Example: S6 with a certain canonical (G2-

invariant) complex structure.
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Holomorphic functions on Cn (reminder)

THEOREM: Let f : M −→ C be a differentiable function on an open subset

M ⊂ Cn, with the natural almost complex structure. Then the following

are equivalent.

(1) f is holomorphic.

(2) The differential df : TM −→ C, considered as a form on the vector space

TxM = TxCn = Cn is C-linear.

(3) For any complex affine line L ∈ Cn, the restriction f |L = C is holomorphic

(complex analytic) as a function of one complex variable.

(4) f is expressed as a sum of Taylor series around any point (z1, ..., zn) ∈M :

f(z1 + t1, z2 + t2, ..., zn + tn) =
∑

i1,...,in

ai1,...,int
i1
1 t

i2
2 ...t

in
n .

(here we assume that the complex numbers ti satisfy |ti| < ε, where ε depends

on f and M).
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Sheaves (reminder)

DEFINITION: A presheaf of functions on a topological space M is a

collection of subrings F(U) ⊂ C(U) in the ring C(U) of all functions on U , for

each open subset U ⊂ M , such that the restriction of every γ ∈ F(U) to an

open subset U1 ⊂ U belongs to F(U1).

DEFINITION: A presheaf of functions F is called a sheaf of functions if

these subrings satisfy the following condition. Let {Ui} be a cover of an open

subset U ⊂ M (possibly infinite) and fi ∈ F(Ui) a family of functions defined

on the open sets of the cover and compatible on the pairwise intersections:

fi|Ui∩Uj = fj|Ui∩Uj
for every pair of members of the cover. Then there exists f ∈ F(U) such

that fi is the restriction of f to Ui for all i.
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Ringed spaces (reminder)

A ringed space (M,F) is a topological space equipped with a sheaf of func-

tions. A morphism (M,F)
Ψ−→ (N,F ′) of ringed spaces is a continuous map

M
Ψ−→ N such that, for every open subset U ⊂ N and every function f ∈ F ′(U),

the function ψ∗f := f ◦Ψ belongs to the ring F
(
Ψ−1(U)

)
. An isomorphism

of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ−1 are morphisms

of ringed spaces.

EXAMPLE: Let M be a manifold of class Ci and let Ci(U) be the space of

functions of this class. Then Ci is a sheaf of functions, and (M,Ci) is a

ringed space.
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Complex manifolds (reminder)

DEFINITION: A holomorphic function on Cn is a function f : Cn −→ C
such that df is complex linear, that is df ∈ Λ1,0(M).

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally

isomorphic to an open ball in Cn with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to Cn

and transition functions (being coordinate functions for one ball considered

in other coordinate system) are holomorphic.
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Integrability of almost complex structures (reminder)

DEFINITION: An almost complex structure I on a manifold is called inte-

grable if any point of M has a neighbourhood U diffeomorphic to an open

subset of Cn, in such a way that the almost complex structure I is induced

by the standard one on U ⊂ Cn.

CLAIM: Complex structure on a manifold M uniquely determines an

integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of

holomorphic functions OM , and OM is determined by I as explained above.
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Frobenius form (reminder)

CLAIM: Let B ⊂ TM be a sub-bundle of a tangent bundle of a smooth

manifold. Given vector fiels X,Y ∈ B, consider their commutator [X,Y ], and

lets Ψ(X,Y ) ∈ TM/B be the projection of [X,Y ] to TM/B. Then Ψ(X,Y )

is C∞(M)-linear in X, Y :

Ψ(fX, Y ) = Ψ(X, fY ) = fΨ(X,Y ).

Proof: Leibnitz identity gives [X, fY ] = f [X,Y ] + X(f)Y , and the second

term belongs to B, hence does not influence the projection to TM/B.

DEFINITION: This form is called the Frobenius form of the sub-bundle

B ⊂ TM . This bundle is called involutive, or integrable, or holonomic if

Ψ = 0.

EXERCISE: Give an example of a non-integrable sub-bundle.
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Formal integrability (reminder)

DEFINITION: An almost complex structure I on (M, I) is called formally
integrable if [T1,0M,T1,0] ⊂ T1,0, that is, if T1,0M is involutive.

DEFINITION: The Frobenius form Ψ ∈ Λ2,0M⊗TM is called the Nijenhuis
tensor.

CLAIM: If a complex structure I on M is integrable, it is formally
integrable.

Proof: Locally, the bundle T1,0(M) is generated by d/dzi, where zi are com-
plex coordinates. These vector fields commute, hence satisfy [d/dzi, d/dzj] ∈
T1,0(M). This means that the Frobenius form vanishes.

THEOREM: (Newlander-Nirenberg)
A complex structure I on M is integrable if and only if it is formally
integrable.

Proof: (real analytic case) later in this lecture.

REMARK: In dimension 1, formal integrability is automatic. Indeed,
T1,0M is 1-dimensional, hence all skew-symmetric 2-forms on T1,0M vanish.
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Real analytic manifolds

DEFINITION: Real analytic function on an open set U ⊂ Rn is a function

which admits Taylor expansion near each point x ∈ U :

f(z1 + t1, z2 + t2, ..., zn + tn) =
∑

i1,...,in

ai1,...,int
i1
1 t

i2
2 ...t

in
n .

(here we assume that the real numbers ti satisfy |ti| < ε, where ε depends on

f and M).

REMARK: Clearly, real analytic functions constitute a sheaf.

DEFINITION: A real analytic manifold is a ringed space which is locally

isomorphic to an open ball B ⊂ Rn with the sheaf of of real analytic functions.
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Involutions

DEFINITION: An involution is a map ι : M −→M such that ι2 = IdM .

EXERCISE: Prove that any linear involution on a real vector space V
is diagonalizable, with eigenvalues ±1.

Theorem 1: Let M be a smooth manifold, and ι : M −→M an involutiin.
Then the fixed point set N of ι is a smooth submanifold.

Proof. Step 1: Inverse function theorem. Let m ∈ M be a point on a
smooth k-dimensional manifold and f1, ..., fk functions on M such that their
differentials df1, ..., dfk are linearly independent in m. Then f1, ..., fk define a
coordinate system in a neighbourhood of a, giving a diffeomorphism of
this neighbourhood to an open ball.

Step 2: Assume that dι has k eigenvalues 1 on TmM , and n− k eigenvalues
-1. Choose a coordinate system x1, ..., xn on M around a point m ∈ N such
that dx1|m, ..., dxk|m are ι-invariant and dxk+1|m, ..., dxn|m are ι-anti-invariant.
Let y1 = x1 + ι∗x1, y2 = x2 + ι∗x2, ... yk = xk + ι∗xk, and yk+1 = xk+1 −
ι∗xk+1, yk+2 = xk+2 − ι∗xk+2, ... yn = xn − ι∗xn. Since dxi|m = xyi|m, these
differentials are linearly independent in m. By Step 1, functions yi define an
ι-invariant coordinate system on an open neighbourhood of m, with N
given by equations yk+1 = yk+2 = ... = yn = 0.
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Real structures

DEFINITION: An involution is a map ι : M −→M such that ι2 = IdM . A

real structure on a complex vector space V = Cn is an R-linear involution

ι : V −→ V such that ι(λx) = λι(x) for any λ ∈ C.

DEFINITION: A map Ψ : M −→M on an almost complex manifold (M, I)

is called antiholomorphic if dΨ(I) = −I. A function f is called antiholo-

morphic if f is holomorphic.

EXERCISE: Prove that antiholomorphic function on M defines an an-

tiholomorphic map from M to C.

EXERCISE: Let ι be a smooth map from a complex manifold M to itself.

Prove that ι is antiholomorphic if and only if ι∗(f) is antiholomorphic for

any holomorphic function f on U ⊂M.

DEFINITION: A real structure on a complex manifold M is an antiholo-

morphic involution τ : M −→M .

EXAMPLE: Complex conjugation defines a real structure on Cn.
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Real analytic manifolds and real structures

PROPOSITION: Let MR ⊂ MC be a fixed point set of an antiholomorphic

involution ι, Ui a complex analytic atlas, and Ψij : Uij −→ Uij the gluing

functions. Then, for appropriate choice of coordinate systems all Ψij

are real analytic on MR, and define a real analytic atlas on the manifold

MR.

Proof. Step 1: Let z1, ..., zn be a holomorphic coordinate system on MC in a

neighbourhood of m ∈MR such that ι(dzi) = dzi in T ∗mM . Such a coordinate

system can be chosen by taking linear functions with prescribed differentials

in m. Replacing zi by xi := zi + ι∗(zi), we obtain another coordinate

system xi on M (compare with Theorem 1).

Step 2: This new coordinate system satisfies ι∗xi = xi, hence MR in these

coordinates is giving by equation imx1 = imx2 = ... = imxn = 0. All gluing

functions from such coordinate system to another one of this type

satisfy Ψij(zi) = Ψij(zi), hence they are real on MR.
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Real analytic manifolds and real structures (2)

PROPOSITION: Any real analytic manifold can be obtained from this

construction.

Proof. Step 1: Let {Ui} be a locally finite atlas of a real analytic manifold

M , and Ψij : Uij −→ Uij the gluing map. We realize Ui as an open ball with

compact closure in Re(Cn) = Rn. By local finiteness, there are only finitely

many such Ψij for any given Ui. Denote by Bε an open ball of radius ε in the

n-dimensional real space im(Cn).

Step 2: Let ε > 0 be a sufficiently small real number such that all Ψij can

be extended to gluing functions Ψ̃ij on the open sets Ũi := Ui × Bε ⊂ Cn.

Then (Ũi,Ψij) is an atlas for a complex manifold MC. Since all Ψij are

real, they are preserved by natural involution acting on Bε as −1 and on Ui
as identity. This involution defines a real structure on MC. Clearly, M is the

set of its fixed points.
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Complexification

DEFINITION: Let MR be a real analytic manifold, and MC a complex analytic
manifold equipped with an antiholomorphic involution, such that MR is the
set of its fixed points. Then MC is called complexification of MR.

DEFINITION: A tensor on a real analytic manifold is called real analytic
if it is expressed locally by a sum of coordinate monomials with real analytic
coefficients.

CLAIM: Let MR be a real analytic manifold, MC its complexification, and Φ
a tensor on MR. Then Φ is real analytic if and only if Φ can be extended
to a holomorpic tensor ΦC in some neighbourhood of MR inside MC.

Proof: The “if” part is clear, because every complex analytic tensor on MC
is by definition real analytic on MR.

Conversely, suppose that Φ is expressed by a sum of coordinate monomials
with real analytic coefficients fi. Let {Ui} be a cover of M , and Ũi := Ui×Bε
the corresponding cover of a neighbourhood of MR in MC constructed above.
Chosing ε sufficiently small, we can assume that the Taylor series giving
coefficients of Φ converges on each Ũi. We define ΦC as the sum of these
series.
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Extension of tensors to a complexification

Lemma 1: Let X be an open ball in Cn equipped with the standard anticom-

plex involution, XR = X ∩ Rn its fixed point set, and α a holomorphic tensor

on X vanishing in XR. Then α = 0.

Proof: Any holomorphic function which vanishes on Rn has all its deriva-

tives is equal zero. Therefore its Taylor series vanish. Such a function van-

ishes on Cn by analytic continuation principle. This argument can be applied

to all coefficients of α.

DEFINITION: An almost complex structure I on a real analytic manifold is

real analytic if I is a real anaytic tensor.

COROLLARY: Let (M, I) be a real analytic almost complex manifold, MC
its complexification, and IC : TMC −→ TMC the holomorphic extension of I

to MC. Then I2
C = − Id.

Proof: The tensor I2
C + Id is holomorphic and vanishes on MR, hence the

previous lemma can be applied.
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Underlying real analytic manifold

REMARK: A complex analytic map Φ : Cn −→ Cn is real analytic as a
map R2n −→ R2n. Indeed, the coefficients of Φ are real and imaginary parts of
holomorphic functions, and real and imaginary parts of holomorphic functions
can be expressed as Taylor series of the real variables.

DEFINITION: Let M be a complex manifold. The underlying real analytic
manifold is the same manifold, with the same gluing functions, considered
as real analytic maps.

DEFINITION: Let M be a complex manifold. The complex conjugate
manifold is the same manifold with almost complex structure −I and anti-
holomorphic functions on M holomorphic on M .

CLAIM: Let M be an integrable almost complex manifold. Denote by MR
its underlying real analytic manifold. Then a complexification of MR can
be given as MC := M ×M, with the anticomplex involution τ(x, y) = (y, x).

Proof: Clearly, the fixed point set of τ is the diagonal, identified with MR = M
as usual. Both holomorphic and antiholomorphic functions on MR are obtained
as restrictions of holomorphic functions from MC, hence the sheaf of real
analytic functions on MR is a real part of the sheaf OMC of holomorphic
functions on MC.

19


