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De Rham algebra (reminder)

DEFINITION: Let A*M denote the vector bundle with the fiber A*T;M
at ¢ € M (A*T'*M is the Grassman algebra of the cotangent space T;M).
The sections of A'!M are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C°°M-linear; the space AN*M
of all differential forms is called the de Rham algebra.

THEOREM: There exists a unique operator C°M —% Alam -4 A2y -4
ASM -4, .. satisfying the following properties

1. On functions, d is equal to the differential.

2. d2=0

3. dinnE) =dm) ANE+ (=1 Ad(€), where 77 = 0 where n € A% M is an even
form, and n € A2T1\/ is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form n is called closed if dp = 0, exact if n € imd. The

group % is called de Rham cohomology of M.

Stokes’ theorem: Let n be n — 1-form on n-manifold M with a boundary
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The Hodge decomposition in linear algebra (reminder)

DEFINITION: Let V be a vector space over R, and I : V — V an automor-
phism which satisfies 12 = —Idy,. Such an automorphism is called a complex
structure operator on V.

We extend the action of 7 on the tensor spaces VRV X..QVRV*QV*®...Q
V* by multiplicativity: (11 ®...Quw1®...Qwy) = [(v1)®...0I(w1)®...Q I (wn).

DEFINITION: Let (V,I) be a space equipped with a complex structure.
The Hodge decomposition V @i C := V1.0 ¢ V0.1 is defined in such a way
that V1.0 is a /=1 -eigenspace of I, and V%1 a —/—1 -eigenspace.

REMARK: Let Vg ;= V ®r C. The Grassmann algebra of skew-symmetric
forms A"Vp := AgV ®gr C' admits a decomposition

NVe= @ NV AyO!
pt+g=n
We denote APV1.0 @ AIVOL by APV . The resulting decomposition A"V =
Dp1q=n NP4V is called the Hodge decomposition of the Grassmann al-

gebra.
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Holomorphic functions (reminder)

DEFINITION: Let I : TM — T M be an endomorphism of a tangent bundle
satisfying [2 = —1Id. Then I is called almost complex structure operator,
and the pair (M,I) an almost complex manifold.

EXAMPLE: M = C", with complex coordinates 2z, = z; + v/—1 y;, and
I(d/dx;) = d/dy;, 1(d/dy;) = —d/dx;.

DEFINITION: A function f: M — C on an almost complex manifold is
called holomorphic if df € ALO(M).

REMARK: For some almost complex manifolds, there are no holomorphic
functions at all, even locally. Example: S® with a certain canonical (Go-
invariant) complex structure.
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Holomorphic functions on C" (reminder)

THEOREM: Let f: M — C be a differentiable function on an open subset
M C C", with the natural almost complex structure. Then the following
are equivalent.

(1) f is holomorphic.

(2) The differential df : TM — C, considered as a form on the vector space
T.M = T,C" = C" is C-linear.

(3) For any complex affine line L € C™, the restriction f|; = C is holomorphic
(complex analytic) as a function of one complex variable.

(4) f is expressed as a sum of Taylor series around any point (z1,...,2n) € M:

f(Z]_ + t1,22 + t2, ..., Zn + tn) — . Z a’il,...,’int]_thQ"'t;L?,n'

’L]_,...,Zn
(here we assume that the complex numbers ¢; satisfy |¢;| < €, where £ depends
on f and M).



Riemann surfaces, lecture 3 M. Verbitsky

Sheaves (reminder)

DEFINITION: A presheaf of functions on a topological space M is a
collection of subrings F(U) C C(U) in the ring C(U) of all functions on U, for
each open subset U C M, such that the restriction of every v € F(U) to an
open subset Uy C U belongs to F(Uy).

DEFINITION: A presheaf of functions F is called a sheaf of functions if
these subrings satisfy the following condition. Let {U;} be a cover of an open
subset U C M (possibly infinite) and f; € F(U;) a family of functions defined
on the open sets of the cover and compatible on the pairwise intersections:

filUiﬂUj — fleiﬂUj
for every pair of members of the cover. Then there exists f ¢ F(U) such
that f; is the restriction of f to U, for all :.
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Ringed spaces (reminder)

A ringed space (M, F) is a topological space equipped with a sheaf of func-
tions. A morphism (M, F) v, (N, F") of ringed spaces is a continuous map
M L N such that, for every open subset U C N and every function f € F(U),
the function ¥*f := f o W belongs to the ring ]—“(\U‘l(U)). An isomorphism
of ringed spaces is a homeomorphism W such that W and w1 are morphisms
of ringed spaces.

EXAMPLE: Let M be a manifold of class C* and let C*(U) be the space of
functions of this class. Then C" is a sheaf of functions, and (M,C") is a
ringed space.
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Complex manifolds (reminder)

DEFINITION: A holomorphic function on C" is a function f: C*"—C
such that df is complex linear, that is df € ALO(M).

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally
isomorphic to an open ball in C" with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to C"
and transition functions (being coordinate functions for one ball considered
in other coordinate system) are holomorphic.
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Integrability of almost complex structures (reminder)

DEFINITION: An almost complex structure I on a manifold is called inte-
grable if any point of M has a neighbourhood U diffeomorphic to an open
subset of C", in such a way that the almost complex structure I is induced
by the standard one on U C C™.

CLAIM: Complex structure on a manifold M uniquely determines an
integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of
holomorphic functions O,;, and O, is determined by I as explained above. =
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Frobenius form (reminder)

CLAIM: Let B C TM be a sub-bundle of a tangent bundle of a smooth
manifold. Given vector fiels X,Y € B, consider their commutator [X,Y], and
lets W(X,Y) € TM/B be the projection of [X,Y] to TM/B. Then W(X,Y)
iIs C>°(M)-linear in X, Y:

V(fX,Y)=W(X, fY) = fV(X,Y).

Proof: Leibnitz identity gives [X, fY] = f[X,Y] + X(f)Y, and the second
term belongs to B, hence does not influence the projection to TM/B. =

DEFINITION: This form is called the Frobenius form of the sub-bundle
B C TM. This bundle is called involutive, or integrable, or holonomic if
v = 0.

EXERCISE: Give an example of a non-integrable sub-bundlile.
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Formal integrability (reminder)

DEFINITION: An almost complex structure I on (M,I) is called formally
integrable if [T1.0M, 71,91 ¢ 71,9, that is, if T1.9M is involutive.

DEFINITION: The Frobenius form W € A29M @ TM is called the Nijenhuis
tensor.

CLAIM: If a complex structure I on M is integrable, it is formally
integrable.

Proof: Locally, the bundle T19(M) is generated by d/dz;, where z; are com-
plex coordinates. These vector fields commute, hence satisfy [d/dzi,d/dzj] e
TL.O(M). This means that the Frobenius form vanishes. =

THEOREM: (Newlander-Nirenberg)
A complex structure I on M is integrable if and only if it is formally
integrable.

Proof: (real analytic case) later in this lecture.

REMARK: In dimension 1, formal integrability is automatic. Indeed,
71001 is 1-dimensional, hence all skew-symmetric 2-forms on T1:9M vanish.
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Real analytic manifolds

DEFINITION: Real analytic function on an open set U C R" is a function
which admits Taylor expansion near each point x € U:

f(z1+t1,20 12,y 2n +tn) = | Z Wiy, it Rt

'L]_,...,Zn
(here we assume that the real numbers t; satisfy |t;| < e, where € depends on
f and M).

REMARK: Clearly, real analytic functions constitute a sheaf.

DEFINITION: A real analytic manifold is a ringed space which is locally
isomorphic to an open ball B C R™ with the sheaf of of real analytic functions.
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Involutions
DEFINITION: An involution is a map ¢: M — M such that 2 =1Id,,.

EXERCISE: Prove that any linear involution on a real vector space V
IS diagonalizable, with eigenvalues +1.

Theorem 1: Let M be a smooth manifold, and ¢« : M — M an involutiin.
Then the fixed point set N of . is a smooth submanifold.

Proof. Step 1: Inverse function theorem. Let m € M be a point on a
smooth k-dimensional manifold and fq,..., fr. functions on M such that their
differentials dfq, ..., df;. are linearly independent in m. Then fq,..., fi define a
coordinate system in a neighbourhood of a, giving a diffeomorphism of
this neighbourhood to an open ball.

Step 2: Assume that dv has k eigenvalues 1 on T, M, and n — k eigenvalues
-1. Choose a coordinate system =x1,...,zp, ONn M around a point m € N such
that dz1|m, ..., dzg|m are c-invariant and dzy41|m, ..., dzn|m are c-anti-invariant.
Let y1 = 21 + 21, yo = 220+ 20, ... yp = zp + xR, ANd Ypy1 = Tpyq —
V'Tht 1, Ykt = T2 — L' Tp42, -.. Yn = Tp — L"xn. Since dz;|m = zy;|lm, these
differentials are linearly independent in m. By Step 1, functions y; define an
(-invariant coordinate system on an open neighbourhood of m, with N
given by equations y;41 =yp4o=..=yp=0. =
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Real structures

DEFINITION: An involution is a map ¢« : M — M such that 2 =1d;;. A
real structure on a complex vector space V = C" is an R-linear involution
v V — V such that ¢«(Az) = \e(z) for any X € C.

DEFINITION: A map WV : M — M on an almost complex manifold (M, I)
is called antiholomorphic if d¥(I) = —I. A function f is called antiholo-
morphic if f is holomorphic.

EXERCISE: Prove that antiholomorphic function on M defines an an-
tiholomorphic map from M to C.

EXERCISE: Let ¢+ be a smooth map from a complex manifold M to itself.
Prove that . is antiholomorphic if and only if .*(f) is antiholomorphic for
any holomorphic function f on U C M.

DEFINITION: A real structure on a complex manifold M is an antiholo-
morphic involution : M — M.

EXAMPLE: Complex conjugation defines a real structure on C",
14
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Real analytic manifolds and real structures

PROPOSITION: Let Mir C Mc be a fixed point set of an antiholomorphic
involution ¢, U; a complex analytic atlas, and W;; : U;; — U;; the gluing
functions. Then, for appropriate choice of coordinate systems all W,
are real analytic on Mp, and define a real analytic atlas on the manifold
MR.

Proof. Step 1: Let zq,...,2n be a holomorphic coordinate system on Mg in a
neighbourhood of m € Mk such that ((dz;) = dz; in T, M. Such a coordinate
system can be chosen by taking linear functions with prescribed differentials
in m. Replacing z; by z; := z;, + .*(z;), we obtain another coordinate
system z; on M (compare with Theorem 1).

Step 2: This new coordinate system satisfies (*x; = T;, hence Mp in these
coordinates is giving by equation imzy = imaxo = ... = imx, = 0. All gluing
functions from such coordinate system to another one of this type
satisfy W;:(z;) = V;;(%z;), hence they are real on Mp. =
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Real analytic manifolds and real structures (2)

PROPOSITION: Any real analytic manifold can be obtained from this
construction.

Proof. Step 1: Let {U;} be a locally finite atlas of a real analytic manifold
M, and W;; : U;; — U;; the gluing map. We realize U; as an open ball with
compact closure in Re(C") = R"™. By local finiteness, there are only finitely
many such \Ifz-j for any given U;. Denote by B: an open ball of radius € in the
n-dimensional real space im(C").

Step 2: Let € > 0 be a sufficiently small real number such that all \Uij can
be extended to gluing functions W;; on the open sets U; := U; x B: C C".
Then (U;, V;;) is an atlas for a complex manifold Mc. Since all W;; are
real, they are preserved by natural involution acting on B: as —1 and on U;
as identity. This involution defines a real structure on M. Clearly, M is the
set of its fixed points. m
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Complexification

DEFINITION: Let My be a real analytic manifold, and M¢c a complex analytic
manifold equipped with an antiholomorphic involution, such that Mp is the
set of its fixed points. Then Mg is called complexification of My.

DEFINITION: A tensor on a real analytic manifold is called real analytic
if it is expressed locally by a sum of coordinate monomials with real analytic
coefficients.

CLAIM: Let My be a real analytic manifold, M¢ its complexification, and &
a tensor on Mgr. Then & is real analytic if and only if ® can be extended
to a holomorpic tensor ¢ in some neighbourhood of Mp inside M.

Proof: The “if” part is clear, because every complex analytic tensor on Mg
is by definition real analytic on Mp.

Conversely, suppose that & is expressed by a sum of coordinate monomials
with real analytic coefficients f;. Let {U;} be a cover of M, and U, := U; x B:
the corresponding cover of a neighbourhood of Mgy in M constructed above.
Chosing e sufficiently small, we can assume that the Taylor series giving
coefficients of & converges on each (77;. We define o as the sum of these
series. m
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Extension of tensors to a complexification

Lemma 1: Let X be an open ball in C" equipped with the standard anticom-
plex involution, Xp = X NR" its fixed point set, and a a holomorphic tensor
on X vanishing in Xp. Then a = 0.

Proof: Any holomorphic function which vanishes on R"™ has all its deriva-
tives is equal zero. Therefore its Taylor series vanish. Such a function van-
ishes on C™ by analytic continuation principle. This argument can be applied
to all coefficients of . =

DEFINITION: An almost complex structure I on a real analytic manifold is
real analytic if I is a real anaytic tensor.

COROLLARY: Let (M, I) be a real analytic almost complex manifold, M¢
its complexification, and I¢ : T'Mc — T M¢ the holomorphic extension of I
to Mc. Then 12 = —Id.

Proof: The tensor Ié—Hd IS holomorphic and vanishes on Mp, hence the
previous lemma can be applied. =
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Underlying real analytic manifold

REMARK: A complex analytic map & : C* — C" is real analytic as a
map R2" —s R2", Indeed, the coefficients of ® are real and imaginary parts of
holomorphic functions, and real and imaginary parts of holomorphic functions
can be expressed as Taylor series of the real variables.

DEFINITION: Let M be a complex manifold. The underlying real analytic
manifold is the same manifold, with the same gluing functions, considered
as real analytic maps.

DEFINITION: Let M be a complex manifold. The complex conjugate
manifold is the same manifold with almost complex structure —I and anti-

holomorphic functions on M holomorphic on M.

CLAIM: Let M be an integrable almost complex manifold. Denote by Mp
its underlying real analytic manifold. Then a complexification of Mp can
be given as Mg := M x M, with the anticomplex involution 7(z,y) = (y, x).

Proof: Clearly, the fixed point set of 7 is the diagonal, identified with Mp = M
as usual. Both holomorphic and antiholomorphic functions on My are obtained
as restrictions of holomorphic functions from M, hence the sheaf of real
analytic functions on My is a real part of the sheaf C’)MC of holomorphic
functions on M¢. =
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