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De Rham algebra (reminder)

DEFINITION: Let A*M denote the vector bundle with the fiber A*T;M
at ¢ € M (A*T'*M is the Grassman algebra of the cotangent space T;M).
The sections of A'!M are called differential i-forms. The algebraic operation
“wedge product” defined on differential forms is C°°M-linear; the space AN*M
of all differential forms is called the de Rham algebra.

THEOREM: There exists a unique operator C°M —% Alam -4 A2y -4
ASM -4, .. satisfying the following properties

1. On functions, d is equal to the differential.

2. d2=0

3. dinnE) =dm) ANE+ (=1 Ad(€), where 77 = 0 where n € A% M is an even
form, and n € A2T1\/ is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form n is called closed if dp = 0, exact if n € imd. The

group % is called de Rham cohomology of M.

Stokes’ theorem: Let n be n — 1-form on n-manifold M with a boundary
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The Hodge decomposition in linear algebra (reminder)

DEFINITION: Let V be a vector space over R, and I : V — V an automor-
phism which satisfies 12 = —Idy,. Such an automorphism is called a complex
structure operator on V.

We extend the action of 7 on the tensor spaces VRV X..QVRV*QV*®...Q
V* by multiplicativity: (11 ®...Quw1®...Qwy) = [(v1)®...0I(w1)®...Q I (wn).

DEFINITION: Let (V,I) be a space equipped with a complex structure.
The Hodge decomposition V @i C := V1.0 ¢ V0.1 is defined in such a way
that V1.0 is a /=1 -eigenspace of I, and V%1 a —/—1 -eigenspace.

REMARK: Let Vg ;= V ®r C. The Grassmann algebra of skew-symmetric
forms A"Vp := AgV ®gr C' admits a decomposition

NVe= @ NV AyO!
pt+g=n
We denote APV1.0 @ AIVOL by APV . The resulting decomposition A"V =
Dp1q=n NP4V is called the Hodge decomposition of the Grassmann al-

gebra.
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Holomorphic functions (reminder)

DEFINITION: Let I : TM — T M be an endomorphism of a tangent bundle
satisfying [2 = —1Id. Then I is called almost complex structure operator,
and the pair (M,I) an almost complex manifold.

EXAMPLE: M = C", with complex coordinates 2z, = z; + v/—1 y;, and
I(d/dx;) = d/dy;, 1(d/dy;) = —d/dx;.

DEFINITION: A function f: M — C on an almost complex manifold is
called holomorphic if df € ALO(M).

REMARK: For some almost complex manifolds, there are no holomorphic
functions at all, even locally. Example: S® with a certain canonical (Go-
invariant) complex structure.
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Holomorphic functions on C" (reminder)

THEOREM: Let f: M — C be a differentiable function on an open subset
M C C", with the natural almost complex structure. Then the following
are equivalent.

(1) f is holomorphic.

(2) The differential df : TM — C, considered as a form on the vector space
T.M = T,C" = C" is C-linear.

(3) For any complex affine line L € C™, the restriction f|; = C is holomorphic
(complex analytic) as a function of one complex variable.

(4) f is expressed as a sum of Taylor series around any point (z1,...,2n) € M:

f(Z]_ + t1,22 + t2, ..., Zn + tn) — . Z a’il,...,’int]_thQ"'t;L?,n'

’L]_,...,Zn
(here we assume that the complex numbers ¢; satisfy |¢;| < €, where £ depends
on f and M).
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Sheaves (reminder)

DEFINITION: A presheaf of functions on a topological space M is a
collection of subrings F(U) C C(U) in the ring C(U) of all functions on U, for
each open subset U C M, such that the restriction of every v € F(U) to an
open subset Uy C U belongs to F(Uy).

DEFINITION: A presheaf of functions F is called a sheaf of functions if
these subrings satisfy the following condition. Let {U;} be a cover of an open
subset U C M (possibly infinite) and f; € F(U;) a family of functions defined
on the open sets of the cover and compatible on the pairwise intersections:

filUiﬂUj — fleiﬂUj
for every pair of members of the cover. Then there exists f ¢ F(U) such
that f; is the restriction of f to U, for all :.
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Ringed spaces (reminder)

A ringed space (M, F) is a topological space equipped with a sheaf of func-
tions. A morphism (M, F) v, (N, F") of ringed spaces is a continuous map
M L N such that, for every open subset U C N and every function f € F(U),
the function ¥*f := f o W belongs to the ring ]—“(\U‘l(U)). An isomorphism
of ringed spaces is a homeomorphism W such that W and w1 are morphisms
of ringed spaces.

EXAMPLE: Let M be a manifold of class C* and let C*(U) be the space of
functions of this class. Then C" is a sheaf of functions, and (M,C") is a
ringed space.
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Complex manifolds (reminder)

DEFINITION: A holomorphic function on C" is a function f: C*"—C
such that df is complex linear, that is df € ALO(M).

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally
isomorphic to an open ball in C" with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to C"
and transition functions (being coordinate functions for one ball considered
in other coordinate system) are holomorphic.
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Integrability of almost complex structures (reminder)

DEFINITION: An almost complex structure I on a manifold is called inte-
grable if any point of M has a neighbourhood U diffeomorphic to an open
subset of C", in such a way that the almost complex structure I is induced
by the standard one on U C C™.

CLAIM: Complex structure on a manifold M uniquely determines an
integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of
holomorphic functions O,;, and O, is determined by I as explained above. =
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Frobenius form (reminder)

CLAIM: Let B C TM be a sub-bundle of a tangent bundle of a smooth
manifold. Given vector fiels X,Y € B, consider their commutator [X,Y], and
lets W(X,Y) € TM/B be the projection of [X,Y] to TM/B. Then W(X,Y)
iIs C>°(M)-linear in X, Y:

V(fX,Y)=W(X, fY) = fV(X,Y).

Proof: Leibnitz identity gives [X, fY] = f[X,Y] + X(f)Y, and the second
term belongs to B, hence does not influence the projection to TM/B. =

DEFINITION: This form is called the Frobenius form of the sub-bundle
B C TM. This bundle is called involutive, or integrable, or holonomic if
v = 0.

EXERCISE: Give an example of a non-integrable sub-bundlile.
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Formal integrability (reminder)

DEFINITION: An almost complex structure I on (M,I) is called formally
integrable if [T1.0M, 71,91 ¢ 71,9, that is, if T1.9M is involutive.

DEFINITION: The Frobenius form W € A29M @ TM is called the Nijenhuis
tensor.

CLAIM: If a complex structure I on M is integrable, it is formally
integrable.

Proof: Locally, the bundle T19(M) is generated by d/dz;, where z; are com-
plex coordinates. These vector fields commute, hence satisfy [d/dzi,d/dzj] e
TL.O(M). This means that the Frobenius form vanishes. =

THEOREM: (Newlander-Nirenberg)
A complex structure I on M is integrable if and only if it is formally
integrable.

Proof: (real analytic case) later in this lecture.

REMARK: In dimension 1, formal integrability is automatic. Indeed,
71001 is 1-dimensional, hence all skew-symmetric 2-forms on T1:9M vanish.
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Real analytic manifolds (reminder)

DEFINITION: Real analytic function on an open set U C R" is a function
which admits Taylor expansion near each point x € U:

f(z1+t1,20 12,y 2n +tn) = | Z Wiy, it Rt

'L]_,...,Zn
(here we assume that the real numbers t; satisfy |t;| < e, where € depends on
f and M).

REMARK: Clearly, real analytic functions constitute a sheaf.

DEFINITION: A real analytic manifold is a ringed space which is locally
isomorphic to an open ball B C R™ with the sheaf of of real analytic functions.
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Real structures (reminder)
DEFINITION: An involution is a map ¢: M — M such that 2 =1d,,.

EXERCISE: Prove that any linear involution on a real vector space V
IS diagonalizable, with eigenvalues +1.

Theorem 1: Let M be a smooth manifold, and ¢« : M — M an involutiin.
Then the fixed point set NV of . iIs a smooth submanifold.

DEFINITION: A real structure on a complex vector space V = C" is an
R-linear involution ¢+ : V — V such that «(Az) = Az for any ) € C.

DEFINITION: A map WV : M — M on an almost complex manifold (M, I)
is called antiholomorphic if d¥(I) = —I. A function f is called antiholo-
morphic if f is holomorphic.

EXERCISE: Prove that antiholomorphic function on M defines an an-
tiholomorphic map from M to C.

DEFINITION: A real structure on a complex manifold M is an antiholo-
morphic involution r: M — M.

EXAMPLE: Complex conjugation defines a real structure on C",
13
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Real analytic manifolds and real structures (reminder)

PROPOSITION: Let Mr C M¢ be a fixed point set of an antiholomorphic
involution 7, U; a complex analytic atlas which is preserved by 7, and W,, :
U;; — U;; the gluing functions. Then all V;; are real analytic on My, and
define a real analytic atlas on the manifold Myp.

PROPOSITION: Any real analytic manifold can be obtained from this
construction.

Proof. Step 1: Let {U;} be a locally finite atlas of a real analytic manifold
M, and W;; : U;; — U;; the gluing map. We realize U; as an open ball with
compact closure in Re(C") = R". By local finiteness, there are only finitely
many such W;; for any given U;. Denote by B: an open ball of radius ¢ in the
n-dimensional real space im(C"™).

Step 2: Let ¢ > 0 be a sufficiently small real number such that all W;; can
be extended to gluing functions W;; on the open sets U; := U; x B: C C".
Then (Ui,wij) is an atlas for a complex manifold Mc. Since all W;; are
real, they are preserved by natural involution acting on B: as —1 and on U;
as identity. This involution defines a real structure on M. Clearly, M is the
set of its fixed points. m
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Complexification (reminder)

DEFINITION: Let MR be a real analytic manifold, and M¢c a complex analytic
manifold equipped with an antiholomorphic involution, such that Mp is the
set of its fixed points. Then Mg is called complexification of My.

DEFINITION: A tensor on a real analytic manifold is called real analytic
if it is expressed locally by a sum of coordinate monomials with real analytic
coefficients.

DEFINITION: An almost complex structure I on a real analytic manifold is
real analytic if I is a real anaytic tensor.

CLAIM: Let (M, I) be a real analytic almost complex manifold, M¢ its com-
plexification, and I¢ : T'M¢c — T'M¢ the holomorphic extension of I to M.
Then 12 = —Id.

Proof: The tensor Ié—l—Id IS holomorphic and vanishes on Mp, hence the
analytic continuation principle can be applied. =
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Underlying real analytic manifold (reminder)

REMARK: A complex analytic map ¢ : C* — C" is real analytic as a
map R2" —s R2", Indeed, the coefficients of ® are real and imaginary parts of
holomorphic functions, and real and imaginary parts of holomorphic functions
can be expressed as Taylor series of the real variables.

DEFINITION: Let M be a complex manifold. The underlying real ana-
lytic manifold Mp is the same topological manifold, with the same gluing

functions, considered as real analytic maps.

REMARK: The real analytic functions on My are obtained as converging
series of holomorphic and antiholomorphic variables.
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Complexification of the underlying real analytic manifold (reminder)

DEFINITION: Let M be a complex manifold. The complex conjugate
manifold is the same manifold with almost complex structure —1.

CLAIM: Let M be an integrable almost complex manifold. Denote by Mp its
underlying real analytic manifold. Then a complexification of My can be
given as M¢ := M x M, with the anticomplex involution 7(z,y) = —(y, x).

Proof: Clearly, the fixed point set of 7 is the diagonal, identified with Mp = M
as usual. Both holomorphic and antiholomorphic functions on My are obtained
as restrictions of holomorphic functions from Mg, hence the sheaf of real
analytic functions on Mp is a real part of the sheaf OM@ of holomorphic
functions on M¢. =
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Holomorphic and antiholomorphic foliations

DEFINITION: Let B C T'M be a sub-bundle. The foliation associated with
B is a family of submanifolds X; C M, called the leaves of the foliation such
that B is the bundle of vectors tangent to the leaves X;.

REMARK: The famous “Frobenius theorem’” says that B is involutive if
and only if it is tangent to a foliation.

REMARK: Let (M,I) be a real analytic almost complex manifold, and Mg
its complexification. Replacing M¢ by a smaller neighbourhood of M, we may
assume that the tensor I is extended to an endomorphism I : T'M¢c — T M,

I?2 = —1d. Since T M is a complex vector bundle, I acts there with the
eigenvalues /—1 and —/—1, giving a decomposition TM¢c = T1O0Mq @
T Me

DEFINITION: Holomorphic foliation is a foliation tangent to T1.90M¢, an-
tiholomorphic foliation is a foliation tangent to 79 M.
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Antiholomorphic foliation on Mg = M x M.

CLAIM: Let (M, I) be a integrable almost complex manifold, M¢c = M x M its
complexification, and w, 7™ projections of M¢ to M and M. Then the fibers
of 7w is a holomorphic foliation, and the fibers of = is a holomorphic
foliation.

Proof: Let TM¢c = T' @ T"” be a decomposition of TM¢ onto part tangent
to fibers of @ and tangent to fibers of n. On Mp the decomposition
TMc = T'&T" coincides with the decomposition TMQC = T1O0M a1 M.
By Lemma 1 the same is true everywhere on M¢c. ®

COROLLARY: Let (M,I) be a integrable almost complex manifold. Then
I 1s a real analytic almost complex structure.

Proof: It was extended to M¢ in the previous claim. =
Corollary 1: Let (M,I) be a real analytic almost complex manifold. Then
holomorphic functions on Mg which are constant on the leaves of antiholo-

moirphic foliation restrict to holomorphic functions on (M, ) C Mg.

Proof: Such functions are constant in the (0, 1)-direction on TM ® C. =
19
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Integrability of real analytic almost complex structure

THEOREM: (“linearization of a vector field”) Let v € TM be a nowhere
vanishing vector field on M. Then there exists a family of 1-dimensional
submanifolds passing through each point of M such that v is tangent
to these submanifolds at each point of M.

THEOREM: Let (M, I) be a real analytic almost complex manifold, dimp M =
2. Then M is integrable.

Proof. Step 1: Consider the complexification Mg of M, and let T Mg =
T1OMc @ TOI My be the decomposition defined above. By “linearization of
a vector field” theorem, there exists a foliation tangent to TO71M@ and one
tangent to TLOM@. Since the leaves of these foliations are transversal, locally
M¢ is a product of M’ and M” which are identified with the space of
leaves of T91 M- and T1.OM.

Step 2: Locally, functions on M’ can be lifted to M’ x M" = Mg, giving func-
tions which are constant on the leaves of the foliation tangent to 791 M. By
Corollary 1, such functions are holomorphic on (M,I). Choosing a function
with linearly independent differentials in x € M, it would give a holomor-
phic coordinate system in a neigbourhood of (M, 1), and the transition
functions between such coordinate systems are by construction holomorphic.
|
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Riemannian manifolds

DEFINITION: Let h € Sym2T*M be a symmetric 2-form on a manifold
which satisfies h(x,z) > 0 for any non-zero tangent vector . Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any z.y € M, and any path v : [a,b] — M connecting
x and y, consider the length of ~ defined as L(v) = fﬂ%\dt, where |‘é—¥| =
h(%X,9)1/2 Define the geodesic distance as d(z,y) = infy L(y), where
infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M =R", h =), da:i2. Prove that the geodesic distance
coincides with d(z,y) = |z — y|.

EXERCISE: Using partition of unity, prove that any manifold admits a
Riemannian structure.
21
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Hermitian structures

DEFINITION: A Riemannia metric h on an almost complex manifold is called
Hermitian if h(x,y) = h(lz, Iy).

REMARK: Given any Riemannian metric g on an almost complex manifold,
a Hermitian metric h can be obtained as h = g+ 1(g), where I(g)(x,y) =

g (x),1(y)).

REMARK: Let I be a complex structure operator on a real vector space
V, and g — a Hermitian metric. Then the bilinear form w(z,y) := g(x, Iy)
is skew-symmetric. Indeed, w(z,y) = g(z,Iy) = g(Iz, [%y) = —g(Iz,y) =
—w(y, ).

DEFINITION: A skew-symmetric form w(x,vy) is called an Hermitian form
on (V,1I).

REMARK: In the triple I,g,w, each element can recovered from the other
two.
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Conformal structure

DEFINITION: Let h,h’ be Riemannian structures on M. These Riemannian
structures are called conformally equivalent if ' = fh, where f is a positive
smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-
lence of Riemannian metrics.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian
manifold, and h, k'’ two Hermitian metrics. Then h and A’ are conformally
equivalent. Conversely, any metric conformally equivalent to Hermitian is
Hermitian.

REMARK: The last statement is clear from the definition, and true in any
dimension.

To prove that two Hermitian metrics are equivalent, we need to consider the
standard U(1)-action on a complex vector space (see the next slide).
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Standard U(1)-action

DEFINITION: Let (V,I) be a real vector space equipped with a complex
structure, U(1) the group of unit complex numbers, U(1) = eV-1mt 1 c R
Define the action of U(1) on V as follows: p(t) = et{. This is called the
standard U(1)-action on a complex vector space. To prove that this
formula defines an action if U(1) = R/2x7Z, it suffices to show that 2™ =1,
which is clear from the eigenvalue decomposition of I.

CLAIM: Let (V,I,h) be a Hermitian vector space, and p: U(1) — GL(V)
the standard U(1)-action. Then h is U(1)-invariant.

Proof: It suffices to show that (h(p(t)m p(t)x) = 0. However, Ccli ”(a:)(t =ty =
I(eto!(2)), hence

© (o), p()) = h(I(p()2), p(D)2) + h(p(B)z, I(p(1)a)) = 2u(z,2) = 0.

24



Riemann surfaces, lecture 4 M. Verbitsky

Hermitian metrics in dimg = 2.

COROLLARY: Let h, A’ be Hermitian metrics on a space (V,I) of real
dimension 2. Then h and /' are proportional.

Proof: h and k' are constant on any U(1)-orbit. Multiplying k'’ by a constant,
we may assume that h = k'’ on a U(1)-orbit U(1)x. Then h = k' everywhere,
because for each non-zero vector v € V, tv € U(1)x for some t € R, giving
h(v,v) =t 2h(tv, tv) =t 2k (tv, tv) = K/ (v,v). =

DEFINITION: Given two Hermitian forms h,h’ on (V,I), with dimpV = 2,
/
we denote by % a constant t such that A/ = th.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian
manifold, and h, k' two Hermitian metrics. Then h and k' are conformally
equivalent.

Proof: h/ = %’h. m
EXERCISE: Prove that Riemannian structure on M is uniquely defined

by its conformal class and its Riemannian volume form.
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Conformal structures and almost complex structures

REMARK: The following theorem implies that almost complex structures
on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let M be a 2-dimensional oriented manifold. Given a complex
structure I, let v be the conformal class of its Hermitian metric (it is unique
as shown above). Then v determines I uniquely.

Proof: Choose a Riemannian structure h compatible with the conformal struc-
ture v. Since M is oriented, the group SO(2) = U(1) acts in its tangent
bundle in a natural way: p: U(1) — GL(TM). Rescaling h does not change
this action, hence it is determined by v. Now, define I as p(v/—1); then
I?2 = p(—1) = —1Id. Since U(1) acts by isometries, this almost complex struc-
ture is compatible with A and with v. =

DEFINITION: A Riemann surface is a complex manifold of dimension
1, or (equivalently) an oriented 2-manifold equipped with a conformal
structure. A map from one Riemannian surface to another is holomor-
phic if and only if it preserves the conformal structure.
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