Riemann surfaces

lecture 4

Misha Verbitsky

Université Libre de Bruxelles October 21, 2015

De Rham algebra (reminder)

DEFINITION: Let Λ^*M denote the vector bundle with the fiber $\Lambda^*T_x^*M$ at $x \in M$ (Λ^*T^*M is the Grassman algebra of the cotangent space T_x^*M). The sections of Λ^iM are called **differential** *i*-**forms**. The algebraic operation "wedge product" defined on differential forms is $C^{\infty}M$ -linear; the space Λ^*M of all differential forms is called **the de Rham algebra**.

THEOREM: There exists a unique operator $C^{\infty}M \stackrel{d}{\longrightarrow} \Lambda^1M \stackrel{d}{\longrightarrow} \Lambda^2M \stackrel{d}{\longrightarrow} \Lambda^3M \stackrel{d}{\longrightarrow} \dots$ satisfying the following properties

- 1. On functions, d is equal to the differential.
- 2. $d^2 = 0$
- 3. $d(\eta \wedge \xi) = d(\eta) \wedge \xi + (-1)^{\tilde{\eta}} \eta \wedge d(\xi)$, where $\tilde{\eta} = 0$ where $\eta \in \lambda^{2i}M$ is an even form, and $\eta \in \lambda^{2i+1}M$ is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form η is called **closed** if $d\eta = 0$, **exact** if $\eta \in \operatorname{im} d$. The group $\frac{\ker d}{\operatorname{im} d}$ is called **de Rham cohomology** of M.

Stokes' theorem: Let η be n-1-form on n-manifold M with a boundary ∂M . Then $\int_M d\eta = \int_{\partial M} \eta$.

The Hodge decomposition in linear algebra (reminder)

DEFINITION: Let V be a vector space over \mathbb{R} , and $I:V\longrightarrow V$ an automorphism which satisfies $I^2=-\operatorname{Id}_V$. Such an automorphism is called a complex structure operator on V.

We extend the action of I on the tensor spaces $V \otimes V \otimes ... \otimes V \otimes V^* \otimes V^* \otimes ... \otimes V^*$ by multiplicativity: $I(v_1 \otimes ... \otimes w_1 \otimes ... \otimes w_n) = I(v_1) \otimes ... \otimes I(w_1) \otimes ... \otimes I(w_n)$.

DEFINITION: Let (V,I) be a space equipped with a complex structure. **The Hodge decomposition** $V \otimes_{\mathbb{R}} \mathbb{C} := V^{1,0} \oplus V^{0,1}$ is defined in such a way that $V^{1,0}$ is a $\sqrt{-1}$ -eigenspace of I, and $V^{0,1}$ a $-\sqrt{-1}$ -eigenspace.

REMARK: Let $V_{\mathbb{C}}:=V\otimes_{\mathbb{R}}\mathbb{C}$. The Grassmann algebra of skew-symmetric forms $\Lambda^n V_{\mathbb{C}}:=\Lambda^n_{\mathbb{R}}V\otimes_{\mathbb{R}}C$ admits a decomposition

$$\Lambda^n V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^p V^{1,0} \otimes \Lambda^q V^{0,1}$$

We denote $\Lambda^p V^{1,0} \otimes \Lambda^q V^{0,1}$ by $\Lambda^{p,q} V$. The resulting decomposition $\Lambda^n V_{\mathbb{C}} = \bigoplus_{p+q=n} \Lambda^{p,q} V$ is called **the Hodge decomposition of the Grassmann algebra**.

Holomorphic functions (reminder)

DEFINITION: Let $I: TM \longrightarrow TM$ be an endomorphism of a tangent bundle satisfying $I^2 = -\operatorname{Id}$. Then I is called almost complex structure operator, and the pair (M, I) an almost complex manifold.

EXAMPLE: $M = \mathbb{C}^n$, with complex coordinates $z_i = x_i + \sqrt{-1} y_i$, and $I(d/dx_i) = d/dy_i$, $I(d/dy_i) = -d/dx_i$.

DEFINITION: A function $f: M \longrightarrow \mathbb{C}$ on an almost complex manifold is called **holomorphic** if $df \in \Lambda^{1,0}(M)$.

REMARK: For some almost complex manifolds, there are no holomorphic functions at all, even locally. Example: S^6 with a certain canonical (G_2 -invariant) complex structure.

Holomorphic functions on \mathbb{C}^n (reminder)

THEOREM: Let $f: M \longrightarrow \mathbb{C}$ be a differentiable function on an open subset $M \subset \mathbb{C}^n$, with the natural almost complex structure. Then the following are equivalent.

- (1) f is holomorphic.
- (2) The differential $df: TM \longrightarrow \mathbb{C}$, considered as a form on the vector space $T_xM = T_x\mathbb{C}^n = \mathbb{C}^n$ is \mathbb{C} -linear.
- (3) For any complex affine line $L \in \mathbb{C}^n$, the restriction $f|_L = \mathbb{C}$ is holomorphic (complex analytic) as a function of one complex variable.
- (4) f is expressed as a sum of Taylor series around any point $(z_1,...,z_n) \in M$:

$$f(z_1 + t_1, z_2 + t_2, ..., z_n + t_n) = \sum_{i_1, ..., i_n} a_{i_1, ..., i_n} t_1^{i_1} t_2^{i_2} ... t_n^{i_n}.$$

(here we assume that the complex numbers t_i satisfy $|t_i| < \varepsilon$, where ε depends on f and M).

Sheaves (reminder)

DEFINITION: A presheaf of functions on a topological space M is a collection of subrings $\mathcal{F}(U) \subset C(U)$ in the ring C(U) of all functions on U, for each open subset $U \subset M$, such that the restriction of every $\gamma \in \mathcal{F}(U)$ to an open subset $U_1 \subset U$ belongs to $\mathcal{F}(U_1)$.

DEFINITION: A presheaf of functions \mathcal{F} is called a sheaf of functions if these subrings satisfy the following condition. Let $\{U_i\}$ be a cover of an open subset $U \subset M$ (possibly infinite) and $f_i \in \mathcal{F}(U_i)$ a family of functions defined on the open sets of the cover and compatible on the pairwise intersections:

$$f_i|_{U_i\cap U_j} = f_j|_{U_i\cap U_j}$$

for every pair of members of the cover. Then there exists $f \in \mathcal{F}(U)$ such that f_i is the restriction of f to U_i for all i.

Ringed spaces (reminder)

A **ringed space** (M,\mathcal{F}) is a topological space equipped with a sheaf of functions. A **morphism** $(M,\mathcal{F}) \xrightarrow{\Psi} (N,\mathcal{F}')$ of ringed spaces is a continuous map $M \xrightarrow{\Psi} N$ such that, for every open subset $U \subset N$ and every function $f \in \mathcal{F}'(U)$, the function $\psi^* f := f \circ \Psi$ belongs to the ring $\mathcal{F}(\Psi^{-1}(U))$. An **isomorphism** of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ^{-1} are morphisms of ringed spaces.

EXAMPLE: Let M be a manifold of class C^i and let $C^i(U)$ be the space of functions of this class. Then C^i is a sheaf of functions, and (M,C^i) is a ringed space.

Complex manifolds (reminder)

DEFINITION: A holomorphic function on \mathbb{C}^n is a function $f: \mathbb{C}^n \longrightarrow \mathbb{C}$ such that df is complex linear, that is $df \in \Lambda^{1,0}(M)$.

REMARK: Holomorphic functions form a sheaf.

DEFINITION: A complex manifold M is a ringed space which is locally isomorphic to an open ball in \mathbb{C}^n with a sheaf of holomorphic functions.

REMARK: In other words, M is covered with open balls embedded to \mathbb{C}^n and transition functions (being coordinate functions for one ball considered in other coordinate system) are holomorphic.

Integrability of almost complex structures (reminder)

DEFINITION: An almost complex structure I on a manifold is called **integrable** if any point of M has a neighbourhood U diffeomorphic to an open subset of \mathbb{C}^n , in such a way that the almost complex structure I is induced by the standard one on $U \subset \mathbb{C}^n$.

CLAIM: Complex structure on a manifold M uniquely determines an integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of holomorphic functions \mathcal{O}_M , and \mathcal{O}_M is determined by I as explained above. \blacksquare

Frobenius form (reminder)

CLAIM: Let $B \subset TM$ be a sub-bundle of a tangent bundle of a smooth manifold. Given vector fiels $X,Y \in B$, consider their commutator [X,Y], and lets $\Psi(X,Y) \in TM/B$ be the projection of [X,Y] to TM/B. Then $\Psi(X,Y)$ is $C^{\infty}(M)$ -linear in X, Y:

$$\Psi(fX,Y) = \Psi(X,fY) = f\Psi(X,Y).$$

Proof: Leibnitz identity gives [X, fY] = f[X, Y] + X(f)Y, and the second term belongs to B, hence does not influence the projection to TM/B.

DEFINITION: This form is called **the Frobenius form** of the sub-bundle $B \subset TM$. This bundle is called **involutive**, or **integrable**, or **holonomic** if $\Psi = 0$.

EXERCISE: Give an example of a non-integrable sub-bundle.

Formal integrability (reminder)

DEFINITION: An almost complex structure I on (M,I) is called **formally** integrable if $[T^{1,0}M,T^{1,0}] \subset T^{1,0}$, that is, if $T^{1,0}M$ is involutive.

DEFINITION: The Frobenius form $\Psi \in \Lambda^{2,0}M \otimes TM$ is called **the Nijenhuis** tensor.

CLAIM: If a complex structure I on M is integrable, it is formally integrable.

Proof: Locally, the bundle $T^{1,0}(M)$ is generated by d/dz_i , where z_i are complex coordinates. These vector fields commute, hence satisfy $[d/dz_i, d/dz_j] \in T^{1,0}(M)$. This means that the Frobenius form vanishes.

THEOREM: (Newlander-Nirenberg)

A complex structure I on M is integrable if and only if it is formally integrable.

Proof: (real analytic case) later in this lecture.

REMARK: In dimension 1, formal integrability is automatic. Indeed, $T^{1,0}M$ is 1-dimensional, hence all skew-symmetric 2-forms on $T^{1,0}M$ vanish.

Real analytic manifolds (reminder)

DEFINITION: Real analytic function on an open set $U \subset \mathbb{R}^n$ is a function which admits Taylor expansion near each point $x \in U$:

$$f(z_1 + t_1, z_2 + t_2, ..., z_n + t_n) = \sum_{i_1, ..., i_n} a_{i_1, ..., i_n} t_1^{i_1} t_2^{i_2} ... t_n^{i_n}.$$

(here we assume that the real numbers t_i satisfy $|t_i| < \varepsilon$, where ε depends on f and M).

REMARK: Clearly, real analytic functions constitute a sheaf.

DEFINITION: A real analytic manifold is a ringed space which is locally isomorphic to an open ball $B \subset \mathbb{R}^n$ with the sheaf of of real analytic functions.

Real structures (reminder)

DEFINITION: An involution is a map $\iota: M \longrightarrow M$ such that $\iota^2 = \operatorname{Id}_M$.

EXERCISE: Prove that any linear involution on a real vector space V is diagonalizable, with eigenvalues ± 1 .

Theorem 1: Let M be a smooth manifold, and $\iota: M \longrightarrow M$ an involutiin. Then the fixed point set N of ι is a smooth submanifold.

DEFINITION: A real structure on a complex vector space $V = \mathbb{C}^n$ is an \mathbb{R} -linear involution $\iota: V \longrightarrow V$ such that $\iota(\lambda x) = \overline{\lambda} x$ for any $\lambda \in \mathbb{C}$.

DEFINITION: A map $\Psi: M \longrightarrow M$ on an almost complex manifold (M, I) is called **antiholomorphic** if $d\Psi(I) = -I$. A function f is called **antiholomorphic** if \overline{f} is holomorphic.

EXERCISE: Prove that antiholomorphic function on M defines an antiholomorphic map from M to \mathbb{C} .

DEFINITION: A real structure on a complex manifold M is an antiholomorphic involution $\tau: M \longrightarrow M$.

EXAMPLE: Complex conjugation defines a real structure on \mathbb{C}^n .

Real analytic manifolds and real structures (reminder)

PROPOSITION: Let $M_{\mathbb{R}} \subset M_{\mathbb{C}}$ be a fixed point set of an antiholomorphic involution τ , U_i a complex analytic atlas which is preserved by τ , and $\Psi_{ij}: U_{ij} \longrightarrow U_{ij}$ the gluing functions. Then all Ψ_{ij} are real analytic on $M_{\mathbb{R}}$, and define a real analytic atlas on the manifold $M_{\mathbb{R}}$.

PROPOSITION: Any real analytic manifold can be obtained from this construction.

Proof. Step 1: Let $\{U_i\}$ be a locally finite atlas of a real analytic manifold M, and $\Psi_{ij}: U_{ij} \longrightarrow U_{ij}$ the gluing map. We realize U_i as an open ball with compact closure in $\text{Re}(\mathbb{C}^n) = \mathbb{R}^n$. By local finiteness, there are only finitely many such Ψ_{ij} for any given U_i . Denote by B_{ε} an open ball of radius ε in the n-dimensional real space $\text{im}(\mathbb{C}^n)$.

Step 2: Let $\varepsilon > 0$ be a sufficiently small real number such that all Ψ_{ij} can be extended to gluing functions $\tilde{\Psi}_{ij}$ on the open sets $\tilde{U}_i := U_i \times B_\varepsilon \subset \mathbb{C}^n$. Then (\tilde{U}_i, Ψ_{ij}) is an atlas for a complex manifold $M_{\mathbb{C}}$. Since all Ψ_{ij} are real, they are preserved by natural involution acting on B_ε as -1 and on U_i as identity. This involution defines a real structure on $M_{\mathbb{C}}$. Clearly, M is the set of its fixed points. \blacksquare

Complexification (reminder)

DEFINITION: Let $M_{\mathbb{R}}$ be a real analytic manifold, and $M_{\mathbb{C}}$ a complex analytic manifold equipped with an antiholomorphic involution, such that $M_{\mathbb{R}}$ is the set of its fixed points. Then $M_{\mathbb{C}}$ is called **complexification** of $M_{\mathbb{R}}$.

DEFINITION: A tensor on a real analytic manifold is called **real analytic** if it is expressed locally by a sum of coordinate monomials with real analytic coefficients.

DEFINITION: An almost complex structure I on a real analytic manifold is real analytic if I is a real analytic tensor.

CLAIM: Let (M,I) be a real analytic almost complex manifold, $M_{\mathbb{C}}$ its complexification, and $I_{\mathbb{C}}: TM_{\mathbb{C}} \longrightarrow TM_{\mathbb{C}}$ the holomorphic extension of I to $M_{\mathbb{C}}$. Then $I_{\mathbb{C}}^2 = -\operatorname{Id}$.

Proof: The tensor $I_{\mathbb{C}}^2+\mathrm{Id}$ is holomorphic and vanishes on $M_{\mathbb{R}}$, hence the analytic continuation principle can be applied.

Underlying real analytic manifold (reminder)

REMARK: A complex analytic map $\Phi: \mathbb{C}^n \longrightarrow \mathbb{C}^n$ is real analytic as a map $\mathbb{R}^{2n} \longrightarrow \mathbb{R}^{2n}$. Indeed, the coefficients of Φ are real and imaginary parts of holomorphic functions, and real and imaginary parts of holomorphic functions can be expressed as Taylor series of the real variables.

DEFINITION: Let M be a complex manifold. The underlying real analytic manifold $M_{\mathbb{R}}$ is the same topological manifold, with the same gluing functions, considered as real analytic maps.

REMARK: The real analytic functions on $M_{\mathbb{R}}$ are obtained as converging series of holomorphic and antiholomorphic variables.

Complexification of the underlying real analytic manifold (reminder)

DEFINITION: Let M be a complex manifold. The complex conjugate manifold is the same manifold with almost complex structure -I.

CLAIM: Let M be an integrable almost complex manifold. Denote by $M_{\mathbb{R}}$ its underlying real analytic manifold. Then a complexification of $M_{\mathbb{R}}$ can be given as $M_{\mathbb{C}} := M \times \overline{M}$, with the anticomplex involution $\tau(x,y) = -(y,x)$.

Proof: Clearly, the fixed point set of τ is the diagonal, identified with $M_{\mathbb{R}}=M$ as usual. Both holomorphic and antiholomorphic functions on $M_{\mathbb{R}}$ are obtained as restrictions of holomorphic functions from $M_{\mathbb{C}}$, hence the sheaf of real analytic functions on $M_{\mathbb{R}}$ is a real part of the sheaf $\mathcal{O}_{M_{\mathbb{C}}}$ of holomorphic functions on $M_{\mathbb{C}}$.

Holomorphic and antiholomorphic foliations

DEFINITION: Let $B \subset TM$ be a sub-bundle. The foliation associated with B is a family of submanifolds $X_t \subset M$, called the leaves of the foliation such that B is the bundle of vectors tangent to the leaves X_t .

REMARK: The famous "Frobenius theorem" says that B is involutive if and only if it is tangent to a foliation.

REMARK: Let (M,I) be a real analytic almost complex manifold, and $M_{\mathbb{C}}$ its complexification. Replacing $M_{\mathbb{C}}$ by a smaller neighbourhood of M, we may assume that the tensor I is extended to an endomorphism $I:TM_{\mathbb{C}}\longrightarrow TM_{\mathbb{C}}$, $I^2=-\operatorname{Id}.$ Since $TM_{\mathbb{C}}$ is a complex vector bundle, I acts there with the eigenvalues $\sqrt{-1}$ and $-\sqrt{-1}$, giving a decomposition $TM_{\mathbb{C}}=T^{1,0}M_{\mathbb{C}}\oplus T^{0,1}M_{\mathbb{C}}$

DEFINITION: Holomorphic foliation is a foliation tangent to $T^{1,0}M_{\mathbb{C}}$, antiholomorphic foliation is a foliation tangent to $T^{0,1}M_{\mathbb{C}}$.

Antiholomorphic foliation on $M_{\mathbb{C}} = M \times \overline{M}$.

CLAIM: Let (M,I) be a integrable almost complex manifold, $M_{\mathbb{C}} = M \times \overline{M}$ its complexification, and $\pi, \overline{\pi}$ projections of $M_{\mathbb{C}}$ to M and \overline{M} . Then the fibers of $\overline{\pi}$ is a holomorphic foliation, and the fibers of π is a holomorphic foliation.

Proof: Let $TM_{\mathbb{C}} = T' \oplus T''$ be a decomposition of $TM_{\mathbb{C}}$ onto part tangent to fibers of $\overline{\pi}$ and tangent to fibers of π . On $M_{\mathbb{R}}$ the decomposition $TM_{\mathbb{C}} = T' \oplus T''$ coincides with the decomposition $TM \otimes \mathbb{C} = T^{1,0}M \oplus T^{0,1}M$. By Lemma 1 the same is true everywhere on $M_{\mathbb{C}}$.

COROLLARY: Let (M, I) be a integrable almost complex manifold. Then I is a real analytic almost complex structure.

Proof: It was extended to $M_{\mathbb{C}}$ in the previous claim.

Corollary 1: Let (M,I) be a real analytic almost complex manifold. Then holomorphic functions on $M_{\mathbb{C}}$ which are constant on the leaves of antiholomorphic foliation restrict to holomorphic functions on $(M,I) \subset M_{\mathbb{C}}$.

Proof: Such functions are constant in the (0,1)-direction on $TM \otimes \mathbb{C}$.

Integrability of real analytic almost complex structure

THEOREM: ("linearization of a vector field") Let $v \in TM$ be a nowhere vanishing vector field on M. Then there exists a family of 1-dimensional submanifolds passing through each point of M such that v is tangent to these submanifolds at each point of M.

THEOREM: Let (M, I) be a real analytic almost complex manifold, dim_{\mathbb{R}} M = 2. Then M is integrable.

Proof. Step 1: Consider the complexification $M_{\mathbb{C}}$ of M, and let $TM_{\mathbb{C}} = T^{1,0}M_{\mathbb{C}} \oplus T^{0,1}M_{\mathbb{C}}$ be the decomposition defined above. By "linearization of a vector field" theorem, there exists a foliation tangent to $T^{0,1}M_{\mathbb{C}}$ and one tangent to $T^{1,0}M_{\mathbb{C}}$. Since the leaves of these foliations are transversal, locally $M_{\mathbb{C}}$ is a product of M' and M'' which are identified with the space of leaves of $T^{0,1}M_{\mathbb{C}}$ and $T^{1,0}M_{\mathbb{C}}$.

Step 2: Locally, functions on M' can be lifted to $M' \times M'' = M_{\mathbb{C}}$, giving functions which are constant on the leaves of the foliation tangent to $T^{0,1}M_{\mathbb{C}}$. By Corollary 1, such functions are holomorphic on (M,I). Choosing a function with linearly independent differentials in $x \in M$, it would give a **holomorphic coordinate system in a neigbourhood of** (M,I), and the transition functions between such coordinate systems are by construction holomorphic.

Riemannian manifolds

DEFINITION: Let $h \in \operatorname{Sym}^2 T^*M$ be a symmetric 2-form on a manifold which satisfies h(x,x) > 0 for any non-zero tangent vector x. Then h is called **Riemannian metric**, of **Riemannian structure**, and (M,h) **Riemannian manifold**.

DEFINITION: For any $x.y \in M$, and any path γ : $[a,b] \longrightarrow M$ connecting x and y, consider the length of γ defined as $L(\gamma) = \int_{\gamma} |\frac{d\gamma}{dt}| dt$, where $|\frac{d\gamma}{dt}| = h(\frac{d\gamma}{dt}, \frac{d\gamma}{dt})^{1/2}$. Define the geodesic distance as $d(x,y) = \inf_{\gamma} L(\gamma)$, where infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality and defines metric on M.

EXERCISE: Prove that this metric induces the standard topology on M.

EXAMPLE: Let $M = \mathbb{R}^n$, $h = \sum_i dx_i^2$. Prove that the geodesic distance coincides with d(x,y) = |x-y|.

EXERCISE: Using partition of unity, prove that any manifold admits a Riemannian structure.

Hermitian structures

DEFINITION: A Riemannia metric h on an almost complex manifold is called **Hermitian** if h(x,y) = h(Ix,Iy).

REMARK: Given any Riemannian metric g on an almost complex manifold, a Hermitian metric h can be obtained as h = g + I(g), where I(g)(x,y) = g(I(x), I(y)).

REMARK: Let I be a complex structure operator on a real vector space V, and g – a Hermitian metric. Then **the bilinear form** $\omega(x,y) := g(x,Iy)$ is skew-symmetric. Indeed, $\omega(x,y) = g(x,Iy) = g(Ix,I^2y) = -g(Ix,y) = -\omega(y,x)$.

DEFINITION: A skew-symmetric form $\omega(x,y)$ is called **an Hermitian form** on (V,I).

REMARK: In the triple I, g, ω , each element can recovered from the other two.

Conformal structure

DEFINITION: Let h, h' be Riemannian structures on M. These Riemannian structures are called **conformally equivalent** if h' = fh, where f is a positive smooth function.

DEFINITION: Conformal structure on M is a class of conformal equivalence of Riemannian metrics.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian manifold, and h, h' two Hermitian metrics. Then h and h' are conformally equivalent. Conversely, any metric conformally equivalent to Hermitian is Hermitian.

REMARK: The last statement is clear from the definition, and true in any dimension.

To prove that two Hermitian metrics are equivalent, we need to consider the standard U(1)-action on a complex vector space (see the next slide).

Standard U(1)-action

DEFINITION: Let (V,I) be a real vector space equipped with a complex structure, U(1) the group of unit complex numbers, $U(1) = e^{\sqrt{-1} \pi t}$, $t \in \mathbb{R}$. Define the action of U(1) on V as follows: $\rho(t) = e^{tI}$. This is called **the standard** U(1)-action on a complex vector space. To prove that this formula defines an action if $U(1) = \mathbb{R}/2\pi\mathbb{Z}$, it suffices to show that $e^{2\pi I} = 1$, which is clear from the eigenvalue decomposition of I.

CLAIM: Let (V, I, h) be a Hermitian vector space, and $\rho : U(1) \longrightarrow GL(V)$ the standard U(1)-action. Then h is U(1)-invariant.

Proof: It suffices to show that $\frac{d}{dt}(h(\rho(t)x,\rho(t)x)=0$. However, $\frac{d}{dt}e^{tI}(x)\big|_{t=t_0}=I(e^{t_0I}(x))$, hence

$$\frac{d}{dt}(h(\rho(t)x,\rho(t)x) = h(I(\rho(t)x),\rho(t)x) + h(\rho(t)x,I(\rho(t)x)) = 2\omega(x,x) = 0.$$

Hermitian metrics in $\dim_{\mathbb{R}} = 2$.

COROLLARY: Let h, h' be Hermitian metrics on a space (V, I) of real dimension 2. Then h and h' are proportional.

Proof: h and h' are constant on any U(1)-orbit. Multiplying h' by a constant, we may assume that h=h' on a U(1)-orbit U(1)x. Then h=h' everywhere, because **for each non-zero vector** $v \in V$, $tv \in U(1)x$ **for some** $t \in \mathbb{R}$, **giving** $h(v,v)=t^{-2}h(tv,tv)=t^{-2}h'(tv,tv)=h'(v,v)$.

DEFINITION: Given two Hermitian forms h, h' on (V, I), with $\dim_{\mathbb{R}} V = 2$, we denote by $\frac{h'}{h}$ a constant t such that h' = th.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian manifold, and h, h' two Hermitian metrics. Then h and h' are conformally equivalent.

Proof: $h' = \frac{h'}{h}h$.

EXERCISE: Prove that Riemannian structure on M is uniquely defined by its conformal class and its Riemannian volume form.

Conformal structures and almost complex structures

REMARK: The following theorem implies that almost complex structures on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let M be a 2-dimensional oriented manifold. Given a complex structure I, let ν be the conformal class of its Hermitian metric (it is unique as shown above). Then ν determines I uniquely.

Proof: Choose a Riemannian structure h compatible with the conformal structure ν . Since M is oriented, the group SO(2) = U(1) acts in its tangent bundle in a natural way: $\rho: U(1) \longrightarrow GL(TM)$. Rescaling h does not change this action, hence it is determined by ν . Now, define I as $\rho(\sqrt{-1})$; then $I^2 = \rho(-1) = -\operatorname{Id}$. Since U(1) acts by isometries, this almost complex structure is compatible with h and with ν .

DEFINITION: A Riemann surface is a complex manifold of dimension 1, or (equivalently) an oriented 2-manifold equipped with a conformal structure. A map from one Riemannian surface to another is holomorphic if and only if it preserves the conformal structure.