Riemann surfaces

lecture 5: conformal structures

Misha Verbitsky

Université Libre de Bruxelles October 28, 2015

Riemannian manifolds (reminder)

DEFINITION: Let $h \in \text{Sym}^2 T^*M$ be a symmetric 2-form on a manifold which satisfies h(x,x) > 0 for any non-zero tangent vector x. Then h is called **Riemannian metric**, of **Riemannian structure**, and (M,h) **Riemannian manifold**.

DEFINITION: For any $x.y \in M$, and any path γ : $[a,b] \longrightarrow M$ connecting x and y, consider **the length** of γ defined as $L(\gamma) = \int_{\gamma} |\frac{d\gamma}{dt}| dt$, where $|\frac{d\gamma}{dt}| = h(\frac{d\gamma}{dt}, \frac{d\gamma}{dt})^{1/2}$. Define **the geodesic distance** as $d(x,y) = \inf_{\gamma} L(\gamma)$, where infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality and defines metric on M.

EXERCISE: Prove that this metric induces the standard topology on M.

EXAMPLE: Let $M = \mathbb{R}^n$, $h = \sum_i dx_i^2$. Prove that the geodesic distance coincides with d(x, y) = |x - y|.

EXERCISE: Using partition of unity, **prove that any manifold admits a Riemannian structure.**

Hermitian structures (reminder)

DEFINITION: A Riemannia metric *h* on an almost complex manifold is called **Hermitian** if h(x, y) = h(Ix, Iy).

REMARK: Given any Riemannian metric g on an almost complex manifold, a Hermitian metric h can be obtained as h = g + I(g), where I(g)(x, y) = g(I(x), I(y)).

REMARK: Let *I* be a complex structure operator on a real vector space *V*, and *g* – a Hermitian metric. Then **the bilinear form** $\omega(x,y) := g(x,Iy)$ is skew-symmetric. Indeed, $\omega(x,y) = g(x,Iy) = g(Ix,I^2y) = -g(Ix,y) = -\omega(y,x)$.

DEFINITION: A skew-symmetric form $\omega(x, y)$ is called **an Hermitian form** on (V, I).

REMARK: In the triple I, g, ω , each element can recovered from the other two.

Conformal structure (reminder)

DEFINITION: Let h, h' be Riemannian structures on M. These Riemannian structures are called **conformally equivalent** if h' = fh, where f is a positive smooth function.

DEFINITION: Conformal structure on *M* is a class of conformal equivalence of Riemannian metrics.

CLAIM: Let *I* be an almost complex structure on a 2-dimensional Riemannian manifold, and h, h' two Hermitian metrics. Then *h* and *h'* are conformally equivalent. Conversely, any metric conformally equivalent to Hermitian is Hermitian.

REMARK: The last statement is clear from the definition, and true in any dimension.

To prove that two Hermitian metrics are equivalent, we need to consider the standard U(1)-action on a complex vector space (see the next slide).

Standard U(1)-action

DEFINITION: Let (V, I) be a real vector space equipped with a complex structure, U(1) the group of unit complex numbers, $U(1) = e^{\sqrt{-1}\pi t}$, $t \in \mathbb{R}$. Define the action of U(1) on V as follows: $\rho(t) = e^{tI}$. This is called **the standard** U(1)-action on a complex vector space. To prove that this formula defines an action if $U(1) = \mathbb{R}/2\pi\mathbb{Z}$, it suffices to show that $e^{2\pi I} = 1$, which is clear from the eigenvalue decomposition of I.

CLAIM: Let (V, I, h) be a Hermitian vector space, and ρ : $U(1) \longrightarrow GL(V)$ the standard U(1)-action. Then h is U(1)-invariant.

Proof: It suffices to show that $\frac{d}{dt}(h(\rho(t)x,\rho(t)x) = 0$. However, $\frac{d}{dt}e^{tI}(x)|_{t=t_0} = I(e^{t_0I}(x))$, hence

$$\frac{d}{dt}(h(\rho(t)x,\rho(t)x)) = h(I(\rho(t)x),\rho(t)x) + h(\rho(t)x,I(\rho(t)x)) = 2\omega(x,x) = 0.$$

Hermitian metrics in $\dim_{\mathbb{R}} = 2$.

COROLLARY: Let h, h' be Hermitian metrics on a space (V, I) of real dimension 2. Then h and h' are proportional.

Proof: *h* and *h'* are constant on any U(1)-orbit. Multiplying *h'* by a constant, we may assume that h = h' on a U(1)-orbit U(1)x. Then h = h' everywhere, because **for each non-zero vector** $v \in V$, $tv \in U(1)x$ **for some** $t \in \mathbb{R}$, **giving** $h(v,v) = t^{-2}h(tv,tv) = t^{-2}h'(tv,tv) = h'(v,v)$.

DEFINITION: Given two Hermitian forms h, h' on (V, I), with dim_{\mathbb{R}} V = 2, we denote by $\frac{h'}{h}$ a constant t such that h' = th.

CLAIM: Let *I* be an almost complex structure on a 2-dimensional Riemannian manifold, and h, h' two Hermitian metrics. Then *h* and *h'* are conformally equivalent.

Proof: $h' = \frac{h'}{h}h$.

EXERCISE: Prove that Riemannian structure on M is uniquely defined by its conformal class and its Riemannian volume form.

Conformal structures and almost complex structures

REMARK: The following theorem implies that almost complex structures on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let *M* be a 2-dimensional oriented manifold. Given a complex structure *I*, let ν be the conformal class of its Hermitian metric (it is unique as shown above). Then ν determines *I* uniquely.

Proof: Choose a Riemannian structure h compatible with the conformal structure ν . Since M is oriented, the group SO(2) = U(1) acts in its tangent bundle in a natural way: $\rho : U(1) \longrightarrow GL(TM)$. Rescaling h does not change this action, hence it is determined by ν . Now, define I as $\rho(\sqrt{-1})$; then $I^2 = \rho(-1) = -\operatorname{Id}$. Since U(1) acts by isometries, this almost complex structure is compatible with h and with ν .

DEFINITION: A Riemann surface is a complex manifold of dimension 1, or (equivalently) an oriented 2-manifold equipped with a conformal structure. A map from one Riemann surface to another is holomorphic if and only if it preserves the conformal structure.

Homogeneous spaces

DEFINITION: A Lie group is a smooth manifold equipped with a group structure such that the group operations are smooth. Lie group G acts on a manifold M if the group action is given by the smooth map $G \times M \longrightarrow M$.

DEFINITION: Let *G* be a Lie group acting on a manifold *M* transitively. Then *M* is called **a homogeneous space**. For any $x \in M$ the subgroup $St_x(G) = \{g \in G \mid g(x) = x\}$ is called **stabilizer of a point** *x*, or **isotropy subgroup**.

CLAIM: For any homogeneous manifold M with transitive action of G, one has M = G/H, where $H = St_x(G)$ is an isotropy subgroup.

Proof: The natural surjective map $G \longrightarrow M$ putting g to g(x) identifies M with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then $St_x(G)^g = St_y(G)$: all the isotropy groups are conjugate.

Isotropy representation

DEFINITION: Let M = G/H be a homogeneous space, $x \in M$ and $St_x(G)$ the corresponding stabilizer group. The **isotropy representation** is the natural action of $St_x(G)$ on T_xM .

DEFINITION: A tensor Φ on a homogeneous manifold M = G/H is called **invariant** if it is mapped to itself by all diffeomorphisms which come from $g \in G$.

REMARK: Let Φ_x be an isotropy invariant tensor on $St_x(G)$. For any $y \in M$ obtained as y = g(x), consider the tensor Φ_y on T_yM obtained as $\Phi_y := g(\Phi)$. The choice of g is not unique, however, for another $g' \in G$ which satisfies g'(x) = y, we have g = g'h where $h \in St_x(G)$. Since Φ is h-invariant, the tensor Φ_y is independent from the choice of g.

We proved

THEOREM: Homogeneous tensors on M = G/H are in bijective correspondence with isotropy invariant tensors on T_xM , for any $x \in M$.

Space forms

DEFINITION: Simply connected space form is a homogeneous manifold of one of the following types:

positive curvature: S^n (an *n*-dimensional sphere), equipped with an action of the group SO(n+1) of rotations

zero curvature: \mathbb{R}^n (an *n*-dimensional Euclidean space), equipped with an action of isometries

negative curvature: SO(1,n)/SO(n), equipped with the natural SO(1,n)-action. This space is also called **hyperbolic space**, and in dimension 2 **hyperbolic plane** or **Poincaré plane** or **Bolyai-Lobachevsky plane**

Riemannian metric on space forms

LEMMA: Let G = SO(n) act on \mathbb{R}^n in a natural way. Then there exists a unique *G*-invariant symmetric 2-form, the standard Euclidean.

Proof: Let g, g' be two *G*-invariant symmetric 2-forms. Since S^{n-1} is an orbit of *G*, we have g(x,x) = g(y,y) for any $x, y \in S^{n-1}$. Multiplying g' by a constant, we may assume that g(x,x) = g'(x,x) for any $x \in S^{n-1}$. Then $g(\lambda x, \lambda x) = g'(\lambda x, \lambda x)$ for any $x \in S^{n-1}$, $\lambda \in \mathbb{R}$; however, all vectors can be written as λx .

COROLLARY: Let M = G/H be a simply connected space form. Then M admits a unique, up to a constant multiplier, G-invariant Riemannian form.

Proof: The isotropy group is SO(n-1) in all three cases, and the previous lemma can be applied.

REMARK: From now on, all space forms are assumed to be homogeneous Riemannian manifolds.

Some low-dimensional Lie group isomorphisms

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie(G) of leftinvariant vector fields. Adjoint representation of G is the standard action of G on Lie(G). For a Lie group G = GL(n), SL(n), etc., PGL(n), PSL(n), etc. denote the image of G in GL(Lie(G)) with respect to the adjoint action.

REMARK: This is the same as a quotient G/Z by the centre of G.

DEFINITION: Define SO(1,2) as the group of orthogonal matrices on a 3-dimensional space equipped with a scalar product of signature (1,2), and U(1,1) as the group of complex linear maps $\mathbb{C}^2 \to \mathbb{C}^2$ preserving a pseudio-Hermitian form of signature (1,1).

THEOREM: The groups PU(1,1), $PSL(2,\mathbb{R})$ and SO(1,2) are isomorphic.

Proof: Isomorphism PU(1,1) = SO(1,2) will be established later in this lecture. To see $PSL(2,\mathbb{R}) \cong SO(1,2)$, consider the Killing form κ on the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$, $a,b \to \operatorname{Tr}(ab)$. Check that it has signature (1,2). Then the image of $SL(2,\mathbb{R})$ in automorphisms of its Lie algebra is mapped to $SO(\mathfrak{sl}(2,\mathbb{R}),\kappa) = SO(1,2)$. Both groups are 3-dimensional, hence it is an isomorphism.

Poincaré-Koebe uniformization theorem

DEFINITION: A **Riemannian manifold of constant curvature** is a Riemannian manifold which is locally isomorphic to a space form.

THEOREM: (Poincaré-Koebe uniformization theorem) Let *M* be a Riemann surface. Then *M* admits a unique complete metric of constant curvature in the same conformal class.

COROLLARY: Any Riemann surface is a quotient of a space form X by a discrete group of isometries $\Gamma \subset Iso(X)$.

COROLLARY: Any simply connected Riemann surface is conformally equivalent to a space form.

REMARK: We shall prove some cases of the uniformization theorem in later lectures.

Today's subject: classify conformal automorphisms of all space forms.

Laurent power series

THEOREM: (Laurent theorem)

Let f be a holomorphic function on an annulus (that is, a ring)

 $R = \{ z \mid \alpha < |z| < \beta \}.$

Then f can be expressed as a Laurent power series $f(z) = \sum_{i \in \mathbb{Z}} z^i a_i$ converging in R.

Proof: Same as Cauchy formula. ■

REMARK: This theorem remains valid if $\alpha = 0$ and $\beta = \infty$.

REMARK: A function φ : $\mathbb{C}^* \longrightarrow \mathbb{C}$ uniquely determines its Laurent power series. Indeed, residue of $z^k \varphi$ in 0 is $\sqrt{-1} 2\pi a_{-k-1}$.

REMARK: Let $\varphi : \mathbb{C}^* \longrightarrow \mathbb{C}$ be a holomorphic function, and $\varphi = \sum_{i \in \mathbb{Z}} z^i a_i$ its Laurent power series. Then $\psi(z) := \varphi(z^{-1})$ has Laurent polynomial $\psi = \sum_{i \in \mathbb{Z}} z^{-i} a_i$.

Affine coordinates on $\mathbb{C}P^1$

DEFINITION: We identify $\mathbb{C}P^1$ with the set of pairs x : y defined up to equivalence $x : y \sim \lambda x : \lambda y$, for each $\lambda \in \mathbb{C}^*$. Affine coordinates are 1 : z for $x \neq 0$, z = y/x and z : 1 for $y \neq 0$, z = x/y. The corresponding gluing functions are given by the map $z \longrightarrow z^{-1}$.

DEFINITION: Meromorphic function is a quotient f/g, where f,g are holomorphic and $g \neq 0$.

REMARK: A holomorphic map $\mathbb{C} \longrightarrow \mathbb{C}P^1$ is the same as a pair of maps f:g up to equivalence $f:g \sim fh:gh$. In other words, holomorphic maps $\mathbb{C} \longrightarrow \mathbb{C}P^1$ are identified with meromorphic functions on \mathbb{C} .

REMARK: In homogeneous coordinates, an element $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL(2, \mathbb{C})$ acts as $x : y \longrightarrow ax + by : cx + dy$. Therefore, in affine coordinates it acts as $z \longrightarrow \frac{az+b}{cz+d}$.

Möbius transforms

DEFINITION: Möbius transform is a conformal (that is, holomorphic) diffeomorphism of $\mathbb{C}P^1$.

```
REMARK: The group PGL(2, \mathbb{C}) acts on \mathbb{C}P^1 holomorphially.
```

The following theorem will be proven later in this lecture.

THEOREM: The natural map from $PGL(2, \mathbb{C})$ to the group of Möbius transforms is an isomorphism.

Claim 1: Let φ : $\mathbb{C}P^1 \longrightarrow \mathbb{C}P^1$ be a holomorphic automorphism, φ_0 : $\mathbb{C} \longrightarrow \mathbb{C}P^1$ its restriction to the chart z : 1, and φ_{∞} : $\mathbb{C} \longrightarrow \mathbb{C}P^1$ its restriction 1 : z. We consider φ_0 , φ_{∞} as meromorphic functions on \mathbb{C} . Then $\varphi_{\infty} = \varphi_0(z^{-1})^{-1}$.

Möbius transforms and $PGL(2, \mathbb{C})$

THEOREM: The natural map from $PGL(2,\mathbb{C})$ to the group $Aut(\mathbb{C}P^1)$ of Möbius transforms is an isomorphism.

Proof. Step 1: Let $\varphi \in Aut(\mathbb{C}P^1)$. Since $PSL(2,\mathbb{C})$ acts transitively on pairs of points $x \neq y$ in $\mathbb{C}P^1$, by composing φ with an appropriate element in $PGL(2,\mathbb{C})$ we can assume that $\varphi(0) = 0$ and $\varphi(\infty = \infty)$. This means that we may consider the restrictions φ_0 and φ_∞ of φ to the affine charts as a holomorphic functions on these charts, $\varphi_0, \varphi_\infty : \mathbb{C} \longrightarrow \mathbb{C}$.

Step 2: Let
$$\varphi_0 = \sum_{i>0} a_i z^i$$
, $a_1 \neq 0$. Claim 1 gives
 $\varphi_{\infty}(z) = \varphi_0(z^{-1})^{-1} = a_1 z (1 + \sum_{i \ge 2} \frac{a_i}{a_1} z^{-i})^{-1}.$

Unless $a_i = 0$ for all $i \ge 2$, this Laurent series has singularities in 0 and cannot be holomorphic. Therefore φ_0 is a linear function, and it belongs to $PGL(2,\mathbb{C})$.

Lemma 1: Let φ be a Möbius transform fixing $\infty \in \mathbb{C}P^1$. Then $\varphi(z) = az + b$ for some $a, b \in \mathbb{C}$ and all $z = z : 1 \in \mathbb{C}P^1$. **Proof:** Let $A \in PGL(2,\mathbb{C})$ be a map acting on $\mathbb{C} = \mathbb{C}P^1 \setminus \infty$ as parallel transport mapping $\varphi(0)$ to 0. Then $\varphi \circ A$ is a Moebius transform which fixes ∞

and 0. As shown in Step 2 above, it is a linear function. ■