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Riemannian manifolds (reminder)

DEFINITION: Let h € Sym2T*M be a symmetric 2-form on a manifold
which satisfies h(x,z) > 0 for any non-zero tangent vector . Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any z.y € M, and any path v : [a,b] — M connecting
x and y, consider the length of ~ defined as L(v) = fﬂ%\dt, where |‘é—¥| =
h(%X,9)1/2 Define the geodesic distance as d(z,y) = infy L(y), where
infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M =R", h =), da:i2. Prove that the geodesic distance
coincides with d(z,y) = |z — y|.

EXERCISE: Using partition of unity, prove that any manifold admits a
Riemannian structure.
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Hermitian structures (reminder)

DEFINITION: A Riemannia metric h on an almost complex manifold is called
Hermitian if h(x,y) = h(lz, Iy).

REMARK: Given any Riemannian metric g on an almost complex manifold,
a Hermitian metric h can be obtained as h = g+ 1(g), where I(g)(x,y) =

g (x),1(y)).

REMARK: Let I be a complex structure operator on a real vector space
V, and g — a Hermitian metric. Then the bilinear form w(z,y) := g(x, Iy)
is skew-symmetric. Indeed, w(z,y) = g(z,Iy) = g(Iz, [%y) = —g(Iz,y) =
—w(y, ).

DEFINITION: A skew-symmetric form w(x,vy) is called an Hermitian form
on (V,1I).

REMARK: In the triple I,g,w, each element can recovered from the other
two.
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Conformal structure (reminder)

DEFINITION: Let h,h’ be Riemannian structures on M. These Riemannian
structures are called conformally equivalent if ' = fh, where f is a positive
smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-
lence of Riemannian metrics.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian
manifold, and h, k'’ two Hermitian metrics. Then h and A’ are conformally
equivalent. Conversely, any metric conformally equivalent to Hermitian is
Hermitian.

REMARK: The last statement is clear from the definition, and true in any
dimension.

To prove that two Hermitian metrics are equivalent, we need to consider the
standard U(1)-action on a complex vector space (see the next slide).

4



Riemann surfaces, lecture 5 M. Verbitsky

Standard U(1)-action

DEFINITION: Let (V,I) be a real vector space equipped with a complex
structure, U(1) the group of unit complex numbers, U(1) = eV-1mt 1 c R
Define the action of U(1) on V as follows: p(t) = et{. This is called the
standard U(1)-action on a complex vector space. To prove that this
formula defines an action if U(1) = R/2x7Z, it suffices to show that 2™ =1,
which is clear from the eigenvalue decomposition of I.

CLAIM: Let (V,I,h) be a Hermitian vector space, and p: U(1) — GL(V)
the standard U(1)-action. Then h is U(1)-invariant.

Proof: It suffices to show that (h(p(t)m p(t)x) = 0. However, Ccli ”(a:)(t =ty =
I(eto!(2)), hence

© (o), p()) = h(I(p()2), p(D)2) + h(p(B)z, I(p(1)a)) = 2u(z,2) = 0.
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Hermitian metrics in dimg = 2.

COROLLARY: Let h, A’ be Hermitian metrics on a space (V,I) of real
dimension 2. Then h and /' are proportional.

Proof: h and k' are constant on any U(1)-orbit. Multiplying k'’ by a constant,
we may assume that h = k'’ on a U(1)-orbit U(1)x. Then h = k' everywhere,
because for each non-zero vector v € V, tv € U(1)x for some t € R, giving
h(v,v) =t 2h(tv, tv) =t 2k (tv, tv) = K/ (v,v). =

DEFINITION: Given two Hermitian forms h,h’ on (V,I), with dimpV = 2,
/
we denote by % a constant t such that A/ = th.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian
manifold, and h, k' two Hermitian metrics. Then h and k' are conformally
equivalent.

Proof: h/ = %’h. m
EXERCISE: Prove that Riemannian structure on M is uniquely defined

by its conformal class and its Riemannian volume form.
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Conformal structures and almost complex structures

REMARK: The following theorem implies that almost complex structures
on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let M be a 2-dimensional oriented manifold. Given a complex
structure I, let v be the conformal class of its Hermitian metric (it is unique
as shown above). Then v determines I uniquely.

Proof: Choose a Riemannian structure h compatible with the conformal struc-
ture v. Since M is oriented, the group SO(2) = U(1) acts in its tangent
bundle in a natural way: p: U(1) — GL(TM). Rescaling h does not change
this action, hence it is determined by v. Now, define I as p(v/—1); then
I?2 = p(—1) = —1Id. Since U(1) acts by isometries, this almost complex struc-
ture is compatible with A and with v. =

DEFINITION: A Riemann surface is a complex manifold of dimension
1, or (equivalently) an oriented 2-manifold equipped with a conformal
structure. A map from one Riemann surface to another is holomorphic
If and only if it preserves the conformal structure.
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Homogeneous spaces

DEFINITION: A Lie group is a smooth manifold equipped with a group
structure such that the group operations are smooth. Lie group G acts on
a manifold M if the group action is given by the smooth map G x M — M.

DEFINITION: Let G be a Lie group acting on a manifold M transitively.
Then M is called a homogeneous space. For any x € M the subgroup
St.(G) ={g9g€ G | g(x) =} is called stabilizer of a point z, or isotropy
subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one
has M = G/H, where H = St;(G) is an isotropy subgroup.

Proof: The natural surjective map G — M putting g to ¢g(x) identifies M
with the space of conjugacy classes G/H. =

REMARK: Let g(x) =y. Then St;(G)J9 = Sty(G): all the isotropy groups
are conjugate.
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Isotropy representation

DEFINITION: Let M = G/H be a homogeneous space, x € M and St;(G)
the corresponding stabilizer group. The isotropy representation is the nat-
ural action of St;(G) on T, M.

DEFINITION: A tensor & on a homogeneous manifold M = G/H is called
iInvariant if it is mapped to itself by all diffeomorphisms which come from

geaq.

REMARK: Let &, be an isotropy invariant tensor on St;(G). Forany ye M
obtained as y = g(z), consider the tensor &, on T, M obtained as &, = g(P).
The choice of g is not unique, however, for another ¢’ € G which satisfies
g (z) = y, we have g = ¢’h where h € St;(G). Since @ is h-invariant, the
tensor ¢, is independent from the choice of g.

We proved

THEOREM: Homogeneous tensors on M = G/H are in bijective cor-
respondence with isotropy invariant tensors on 7,.M, for any x € M.

m
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Space forms

DEFINITION: Simply connected space form is a homogeneous manifold
of one of the following types:

positive curvature: S™ (an n-dimensional sphere), equipped with an
action of the group SO(n 4+ 1) of rotations

zero curvature: R" (an n-dimensional Euclidean space), equipped with
an action of isometries

negative curvature: SO(1,n)/SO(n), equipped with the natural SO(1,n)-
action. This space is also called hyperbolic space, and in dimension 2 hy-
perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

10



Riemann surfaces, lecture 5 M. Verbitsky

Riemannian metric on space forms

LEMMA: Let G = SO(n) act on R"™ in a natural way. Then there exists a
unique G-invariant symmetric 2-form, the standard Euclidean.

Proof: Let g,¢ be two G-invariant symmetric 2-forms. Since S 1 is an
orbit of G, we have g(z,z) = ¢(y,y) for any z,y € S*~1. Multiplying ¢ by
a constant, we may assume that g(z,z) = ¢'(z,z) for any z € S"~1. Then
gz, \x) = ¢z, \z) for any = € S 1, X\ € R; however, all vectors can be
written as \z. m

COROLLARY: Let M = G/H be a simply connected space form. Then M
admits a unique, up to a constant multiplier, G-invariant Riemannian
form.

Proof: The isotropy group is SO(n — 1) in all three cases, and the previous
lemma can be applied. =

REMARK: From now on, all space forms are assumed to be homoge-
neous Riemannian manifolds.
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Some low-dimensional Lie group isomorphisms

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie(G) of left-
invariant vector fields. Adjoint representation of G is the standard action
of G on Lie(G). For a Lie group G = GL(n), SL(n), etc., PGL(n), PSL(n),
etc. denote the image of G in GL(Lie(G)) with respect to the adjoint action.

REMARK: This is the same as a quotient G/Z by the centre of G.

DEFINITION: Define SO(1,2) as the group of orthogonal matrices on a
3-dimensional space equipped with a scalar product of signature (1,2), and
U(1,1) as the group of complex linear maps C2 — C2 preserving a pseudio-
Hermitian form of signature (1,1).

THEOREM: The groups PU(1,1), PSL(2,R) and SO(1,2) are isomor-
phic.

Proof: Isomorphism PU(1,1) = SO(1,2) will be established later in this lec-
ture. To see PSL(2,R) &= S0O(1,2), consider the Killing form « on the Lie
algebra sl(2,R), a,b — Tr(ab). Check that it has signature (1,2). Then
the image of SL(2,R) in automorphisms of its Lie algebra is mapped
to SO(sl(2,R),x) = SO(1,2). Both groups are 3-dimensional, hence it is an
Isomorphism. m
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Poincaré-Koebe uniformization theorem

DEFINITION: A Riemannian manifold of constant curvature is a Rie-
mannian manifold which is locally isomorphic to a space form.

THEOREM: (Poincaré-Koebe uniformization theorem) Let M be a Rie-
mann surface. Then M admits a unique complete metric of constant
curvature in the same conformal class.

COROLLARY: Any Riemann surface is a quotient of a space form X
by a discrete group of isometries I' C Iso(X).

COROLLARY: Any simply connected Riemann surface is conformally
equivalent to a space form.

REMARK: We shall prove some cases of the uniformization theorem in later
lectures.

Today’s subject: classify conformal automorphisms of all space forms.
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Laurent power series

THEOREM: (Laurent theorem)
Let f be a holomorphic function on an annulus (that is, a ring)

R={z | a<]|z|<pB}

Then f can be expressed as a Laurent power series f(z) = Y,c7 2'a;
converging in R.

Proof: Same as Cauchy formula. =
REMARK: This theorem remains valid if « =0 and 8 = oc.

REMARK: A function ¢ : C* — C uniquely determines its Laurent
power series. Indeed, residue of zFyp in 0 is v/—1 2wa_s_1.

REMARK: Let ¢ : C* — C be a holomorphic function, and ¢ = ¥,z 2'a;
its Laurent power series. Then ¢(z) := ¢(z~1) has Laurent polynomial

Y= ez 2 'a;.
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Affine coordinates on CP1

DEFINITION: We identify CP! with the set of pairs z : y defined up to
equivalence =z : y ~ Ax . Ay, for each A € C*. Affine coordinates are 1 : z
forx #0, z=y/x and z : 1 for y # 0, z = x/y. The corresponding gluing

functions are given by the map z — 21

DEFINITION: Meromorphic function is a quotient f/g, where f g are
holomorphic and g # 0.

REMARK: A holomorphic map C —s CP! is the same as a pair of maps
f g up to equivalence f: g~ fh:gh. In other words, holomorphic maps
C —s CP! are identified with meromorphic functions on C.

REMARK: In homogeneous coordinates, an element Z Z c PSL(2,C)
acts as x: y—ax + by : cx + dy. Therefore, in affine coordinates it acts as
p . az+b

" cz+d-
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MoODbius transforms

DEFINITION: Mobius transform is a conformal (that is, holomorphic)
diffeomorphism of CPL.

REMARK: The group PGL(2,C) acts on CPl holomorphially.
The following theorem will be proven later in this lecture.

THEOREM: The natural map from PGL(2,C) to the group of Maobius
transforms is an isomorphism.

Claim 1: Let ¢ : CPl—CP! be a holomorphic automorphism, ¢g :
C —» CP1 its restriction to the chart z : 1, and ¢s : C —> CP?! its restric-
tion 1 : z. We consider ¢g, 9o as meromorphic functions on C. Then

oo = wo(z7 1) L.
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Mobius transforms and PGL(2,C)

THEOREM: The natural map from PGL(2,C) to the group Aut(CP)
of Mobius transforms is an isomorphism.

Proof. Step 1: Let ¢ € Aut(CP!). Since PSL(2,C) acts transitively on
pairs of points =z # vy in (CPl, by composing ¢ with an appropriate element
in PGL(2,C) we can assume that ¢(0) = 0 and p(co = oco. This means that
we may consider the restrictions ¢g and ¢~ Of ¢ to the affine charts as a
holomorphic functions on these charts, ¢g, poo : C — C.

Step 2: Let pg = Y;>0aiz’, a; # 0. Claim 1 gives

poo(2) = po(z )t =arz(14+ Y a7
i>2 41
Unless a; = 0O for all ¢ > 2, this Laurent series has singularities in O and
cannot be holomorphic. Therefore ¢g is a linear function, and it belongs
to PGL(2,C). =

Lemma 1: Let ¢ be a Mdbius transform fixing oo € CPL. Then o(2) = az+b
for some a,bc C and all z =2z:1eCPL

Proof: Let A € PGL(2,C) be a map acting on C = CP1\co as parallel trans-
port mapping ¢(0) to 0. Then po A is a Moebius transform which fixes oo
and 0. As shown in Step 2 above, it is a linear function. =
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