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Riemannian manifolds (reminder)

DEFINITION: Let h € Sym2T*M be a symmetric 2-form on a manifold
which satisfies h(x,z) > 0 for any non-zero tangent vector . Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any z.y € M, and any path v : [a,b] — M connecting
x and y, consider the length of ~ defined as L(v) = fﬂ%\dt, where |‘é—¥| =
h(%X,9)1/2 Define the geodesic distance as d(z,y) = infy L(y), where
infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M =R", h =), da:i2. Prove that the geodesic distance
coincides with d(z,y) = |z — y|.

EXERCISE: Using partition of unity, prove that any manifold admits a
Riemannian structure.
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Hermitian structures (reminder)

DEFINITION: A Riemannia metric h on an almost complex manifold is called
Hermitian if h(x,y) = h(lz, Iy).

REMARK: Given any Riemannian metric g on an almost complex manifold,
a Hermitian metric h can be obtained as h = g+ 1(g), where I(g)(x,y) =

g (x),1(y)).

REMARK: Let I be a complex structure operator on a real vector space
V, and g — a Hermitian metric. Then the bilinear form w(z,y) := g(x, Iy)
is skew-symmetric. Indeed, w(z,y) = g(z,Iy) = g(Iz, [%y) = —g(Iz,y) =
—w(y, ).

DEFINITION: A skew-symmetric form w(x,vy) is called an Hermitian form
on (V,1I).

REMARK: In the triple I,g,w, each element can recovered from the other
two.
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Conformal structure (reminder)

DEFINITION: Let h,h’ be Riemannian structures on M. These Riemannian
structures are called conformally equivalent if A’ = fh, where f is a positive
smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-
lence of Riemannian metrics.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian
manifold, and h, k'’ two Hermitian metrics. Then h and A’ are conformally
equivalent. Conversely, any metric conformally equivalent to Hermitian is
Hermitian.

REMARK: The last statement is clear from the definition, and true in any
dimension.
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Conformal structures and almost complex structures (reminder)

REMARK: The following theorem implies that almost complex structures
on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let M be a 2-dimensional oriented manifold. Given a complex
structure I, let v be the conformal class of its Hermitian metric. Then v is
determined by I/, and it determines I uniquely.

DEFINITION: A Riemann surface is a complex manifold of dimension
1, or (equivalently) an oriented 2-manifold equipped with a conformal
structure. A map from one Riemann surface to another is holomorphic
iIf and only if it preserves the conformal structure.
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Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group
structure such that the group operations are smooth. Lie group G acts on
a manifold M if the group action is given by the smooth map G x M — M.

DEFINITION: Let G be a Lie group acting on a manifold M transitively.
Then M is called a homogeneous space. For any x € M the subgroup
St.(G) ={g9g€ G | g(x) =} is called stabilizer of a point z, or isotropy
subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one
has M = G/H, where H = St;(G) is an isotropy subgroup.

Proof: The natural surjective map G — M putting g to ¢g(x) identifies M
with the space of conjugacy classes G/H. =

REMARK: Let g(x) =y. Then St;(G)J9 = Sty(G): all the isotropy groups
are conjugate.
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Isotropy representation (reminder)

DEFINITION: Let M = G/H be a homogeneous space, x € M and St;(G)
the corresponding stabilizer group. The isotropy representation is the nat-
ural action of St;(G) on T, M.

DEFINITION: A tensor & on a homogeneous manifold M = G/H is called
iInvariant if it is mapped to itself by all diffeomorphisms which come from

geaq.

REMARK: Let &, be an isotropy invariant tensor on St;(G). Forany ye M
obtained as y = g(z), consider the tensor &, on T, M obtained as &, = g(P).
The choice of g is not unique, however, for another ¢’ € G which satisfies
g (z) = y, we have g = ¢’h where h € St;(G). Since @ is h-invariant, the
tensor ¢, is independent from the choice of g.

We proved

THEOREM: Homogeneous tensors on M = G/H are in bijective cor-
respondence with isotropy invariant tensors on 7,.M, for any x € M.

|
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Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous manifold
of one of the following types:

positive curvature: S™ (an n-dimensional sphere), equipped with an
action of the group SO(n 4+ 1) of rotations

zero curvature: R" (an n-dimensional Euclidean space), equipped with
an action of isometries

negative curvature: SO(1,n)/SO(n), equipped with the natural SO(1,n)-
action. This space is also called hyperbolic space, and in dimension 2 hy-
perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane
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Riemannian metric on space forms (reminder)

LEMMA: Let G = SO(n) act on R"™ in a natural way. Then there exists a
unique G-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g,¢ be two G-invariant symmetric 2-forms. Since S 1 is an
orbit of G, we have g(z,z) = ¢(y,y) for any z,y € S*~1. Multiplying ¢ by
a constant, we may assume that g(z,z) = ¢'(z,z) for any z € S"~1. Then
gz, \x) = ¢z, \z) for any = € S 1, X\ € R; however, all vectors can be
written as \z. m

COROLLARY: Let M = G/H be a simply connected space form. Then M
admits a unique, up to a constant multiplier, G-invariant Riemannian
form.

Proof: The isotropy group is SO(n — 1) in all three cases, and the previous
lemma can be applied. =

REMARK: From now on, all space forms are assumed to be homoge-
neous Riemannian manifolds.
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Some low-dimensional Lie group isomorphisms (reminder)

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie(G) of left-
invariant vector fields. Adjoint representation of G is the standard action
of G on Lie(G). For a Lie group G = GL(n), SL(n), etc., PGL(n), PSL(n),
etc. denote the image of G in GL(Lie(G)) with respect to the adjoint action.

REMARK: This is the same as a quotient G/Z by the centre of G.

DEFINITION: Define SO(1,2) as the group of orthogonal matrices on a
3-dimensional space equipped with a scalar product of signature (1,2), and
U(1,1) as the group of complex linear maps C2 — C2 preserving a pseudio-
Hermitian form of signature (1,1).

THEOREM: The groups PU(1,1), PSL(2,R) and SO(1,2) are isomor-
phic.

Proof: Isomorphism PU(1,1) = SO(1,2) will be established later in this lec-
ture. To see PSL(2,R) &= S0O(1,2), consider the Killing form « on the Lie
algebra sl(2,R), a,b — Tr(ab). Check that it has signature (1,2). Then
the image of SL(2,R) in automorphisms of its Lie algebra is mapped
to SO(sl(2,R),x) = SO(1,2). Both groups are 3-dimensional, hence it is an
Isomorphism. m
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Poincaré-Koebe uniformization theorem (reminder)

DEFINITION: A Riemannian manifold of constant curvature is a Rie-
mannian manifold which is locally isometric to a space form.

THEOREM: (Poincaré-Koebe uniformization theorem) Let M be a Rie-
mann surface. Then M admits a unique complete metric of constant
curvature in the same conformal class.

COROLLARY: Any Riemann surface is a quotient of a space form X
by a discrete group of isometries I' C Iso(X).

COROLLARY: Any simply connected Riemann surface is conformally
equivalent to a space form.

REMARK: We shall prove some cases of the uniformization theorem in later
lectures.

Today’s subject: classify conformal automorphisms of all space forms.
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Laurent power series

THEOREM: (Laurent theorem)
Let f be a holomorphic function on an annulus (that is, a ring)

R={z | a<]|z|<pB}

Then f can be expressed as a Laurent power series f(z) = Y,c7 2'a;
converging in R.

Proof: Same as Cauchy formula. =
REMARK: This theorem remains valid if « =0 and 8 = oc.

REMARK: A function ¢ : C* — C uniquely determines its Laurent
power series. Indeed, residue of zFyp in 0 is v/—1 2wa_s_1.

REMARK: Let ¢ : C* — C be a holomorphic function, and ¢ = ¥,z 2'a;
its Laurent power series. Then ¢(z) := ¢(z~1) has Laurent polynomial

Y= ez 2 'a;.

12
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Affine coordinates on CP!

DEFINITION: We identify CP! with the set of pairs z : y defined up to
equivalence = : y ~ Ax . Ay, for each A € C*. This representation is called
homogeneous coordimates. Affine coordinatesarel:zforz #0, z =y/x
and z:1 for y # 0, z = x/y. The corresponding gluing functions are given by

the map z — 2~ 1.

DEFINITION: Meromorphic function is a quotient f/g, where f,g are
holomorphic and g # 0.

REMARK: A holomorphic map C —s CP! is the same as a pair of maps
f g up to equivalence f: g~ fh:gh. In other words, holomorphic maps
C —s CP1l are identified with meromorphic functions on C.

REMARK: In homogeneous coordinates, an element CC" Z c PSL(2,0)
acts as x : y—ax + by : cx + dy. Therefore, in affine coordinates it acts as
. . az+b

" cz+d-
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MoODbius transforms

DEFINITION: Mobius transform is a conformal (that is, holomorphic)
diffeomorphism of CPL.

REMARK: The group PGL(2,C) acts on CPl holomorphially.
The following theorem will be proven later in this lecture.

THEOREM: The natural map from PGL(2,C) to the group of Maobius
transforms is an isomorphism.

Claim 1: Let ¢ : CPl—CP! be a holomorphic automorphism, ¢g :
C —» CP1 its restriction to the chart z : 1, and ¢s : C —> CP?! its restric-
tion 1 : z. We consider ¢g, 9o as meromorphic functions on C. Then

oo = wo(z7 1) L.
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Mobius transforms and PGL(2,C)

THEOREM: The natural map from PGL(2,C) to the group Aut(CP)
of Mobius transforms is an isomorphism.

Proof. Step 1: Let ¢ € Aut(CP!). Since PSL(2,C) acts transitively on
pairs of points =z # vy in (CPl, by composing ¢ with an appropriate element
in PGL(2,C) we can assume that ¢(0) = 0 and p(co = oco. This means that
we may consider the restrictions ¢g and ¢~ Of ¢ to the affine charts as a
holomorphic functions on these charts, ¢g, poo : C — C.

Step 2: Let pg = Y;>0aiz’, a; # 0. Claim 1 gives

poo(2) = po(z )t =arz(14+ Y a7
i>2 41
Unless a; = 0O for all ¢ > 2, this Laurent series has singularities in O and
cannot be holomorphic. Therefore ¢g is a linear function, and it belongs
to PGL(2,C). =

Lemma 1: Let ¢ be a Mdbius transform fixing oo € CPL. Then o(2) = az+b
for some a,bc C and all z =2z:1eCPL

Proof: Let A € PGL(2,C) be a map acting on C = CP1\co as parallel trans-
port mapping ¢(0) to 0. Then po A is a Moebius transform which fixes oo
and 0. As shown in Step 2 above, it is a linear function. =
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Properties of MoObius transform

DEFINITION: A circle in S2 is an orbit of a 1-parametric isometric rotation
subgroup U C PGL(2,C).

PROPOSITION: The action of PGL(2,C) on CP! maps circles to cir-
cles.

Proof. Step 1: Consider a pseudo-Hermitian form h on V = C2 of signature
(1,1). Let hy be a positive definite Hermitian form on V. There exists
a basis z,y € V such that hy = V-12®z7++V/-1y®y (that is, z,y is
orthonormal with respect to hy) and h = —/—-1laz®z 4+ +/—1 By ® 7, with
a > 0, B <0 real numbers. Then {z | h(z,z) = 0} is invariant under the
rotation z,y —» x, eV~ 1%, hence it is a circle.

Step 2: Clearly, all circles are obtained this way.

Step 3: PGL(2,C) maps pseudo-Hermitian forms to pseudo-Hermitian forms
of the same signature, and therefore preserves circles. =
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Orbits of compact one-parametric subgroups in PSL(2,C)

LEMMA: Let G = S! be a compact one-parametric subgroup in PSL(2,C).
Then any G-orbit in CP! is a circle.

Proof. Step 1: Let V = C2, and consider the natural projection map = :
SL(V) — PSL(2,C) = SL(V)/+1. Then G = 7~ 1(@®) is compact. Choose a
G-invariant Hermitian metric h1 on V, and let h be the standard Hermitiann
metric. Since GL(2,C) acts on the set of Hermitian metrics transitively (prove
it), there exists u € GL(V) such that u(h) = hy. By definition, circles on CP1
are orbits of one-parametric subgroups in U(V,h). Since u(G) is a one-
parametric subgroup in U(V,h), its orbit is a circle.

Step 2: From Step 1, we obtain that any orbit of G is v~ 1(circle). Since v~ 1
iIs a Moebius transform, and Moebius transforms preserve circles, this orbit is
a Circle. m
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Conformal automorphisms of C

THEOREM: (Riemann removable singularity theorem) Let f: C—C
be a continuous function which is holomorphic outside of a finite set. Then
f 1s holomorphic.

Proof: Use the Cauchy formula. m

THEOREM: All conformal automorphisms of C can be expressed by
z —» az + b, where a,b are complex numbers, a # 0.

Proof: Let ¢ be a conformal automorphism of C. The Riemann removable
singularity theorem implies that ¢ can be extended to a holomorphic au-
tomorphism of CPL. Indeed, CP! is obtained as a 1-point compactification
of C, and any continuous map from C to C is extended to a continuous map
on CPl. Now, Lemma 1 implies that ¢(z) =az+b. =
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Schwartz lemmma

CLAIM: (maximum principle) Let f be a holomorphic function defined
on an open set U. Then f cannot have strict maxima in U. If f has
non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.
LEMMA: (Schwartz lemma) Let f: A — A be a map from disk to itself

fixing 0. Then |f/(0)| < 1, and equality can be realized only if f(z) = az
for some a € C, |of = 1.

Proof: Consider the function ¢ := f(zz). Since f(0) = 0O, it is holomorphic,
and since f(A) C A, on the boundary 0A we have |p|llgan < 1. Now, the
maximum principle implies that |f/(0)| = |¢(0)| < 1, and equality is realized
only if ¢ = const. =
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Conformal automorphisms of the disk act transitively

CLAIM: Let A C C be the unit disk. Then the group Aut(A) of its
holomorphic automorphisms acts on A transitively.

Proof. Step 1: Let Vy(z) = 72 for some a € A. Then V4(0) = —a. ToO

l—az
prove transitivity, it remains to show that V,(A) = A.

Step 2: For |z| = 1, we have

2Z —az 1 —az

Va(2)| = [Va(2)]|2] = = 1.

1 —az 1 —az

Therefore, V, preserves the circle. Maximum principle implies that V, maps
its interior to its interior.

Step 3: To prove invertibility, we interpret V,; as an element of PGL(2,C). =

20
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Transitive action is determined by a stabilizer of a point

Lemma 2: Let M = G/H be a homogeneous space, and WV : G; —G a
homomorphism such that G1 acts on M transitively and St;(G1) = Stz (G).
Then G = G.

Proof: Since any element in ker W belongs to St,(G7) = Stz (G) C G, the
homomorphism W is injective. It remais only to show that W is surjective.

Let ¢ € G. Since G171 acts on M transitively, gg1(x) = x for some g1 € G1.
Then gg1 € Stz (G1) = St (G) CimG1. Thisgives g€ G1. =
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Group of conformal automorphisms of the disk

REMARK: The group PU(1,1) Cc PGL(2,C) of unitary matrices preserving a
pseudo-Hermitian form h of signature (1,1) acts on a disk {l € CP! | h(i,1) >
0} by holomorphic automorphisms.

COROLLARY: Let A C C be the unit disk, Aut(A) the group of its con-
formal automorphisms, and W : PU(1,1) — Aut(A) the map constructed
above. Then W is an isomorphism.

Proof: We use Lemma 2. Both groups act on A transitively, hence it suffices
only to check that St,(PU(1,1)) = St and St.(Aut(A)) = S1. The first
isomorphism is clear, because the space of unitary automorphisms fixing a
vector v is U(v+). The second isomorphism follows from Schwartz lemma. =

COROLLARY: Let h be a homogeneous metricon A = PU(1, 1)/51. Then
(A, h) Is conformally equivalent to (A, flat metric).

Proof: The group Aut(A) = PU(1,1) acts on A holomorphically, that is,
preserving the conformal structure of the flat metric. However, homoge-
neous conformal structure on PU(1, 1)/S1 is unique for the same reason the
homogeneous metric is unique. =
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Upper half-plane

REMARK: The map z— —+/—1 (2 — 1)1 induces a diffeomorphism from
the unit disc in C to the upper half-plane H.

PROPOSITION: The group Aut(A) acts on the upper half-plane H as
2 Ay atb \where a.b.c,d € R, and det <a b) > 0.

cz+d’ c d

REMARK: The group of such A is naturally identified with PSL(2,R) C
PSL(2,C).

Proof: The group PSL(2,R) preserves the line imz = 0, hence acts on H by
conformal automorphisms. The stabilizer of a point is S1 (prove it). Now,
Lemma 2 implies that PSL(2,R) = PU(1,1). m

REMARK: We have shown that H = SO(l,Q)/Sl, hence H is conformally
equivalent to the hyperbolic space.
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Upper half-plane as a Riemannian manifold

DEFINITION: Poincaré half-plane is the upper half-plane equipped with a
homogeneous metric of constant negative curvature constructed above.

THEOREM: Let (x,y) be the usual coordinates on the upper half-plane H.
2 2
Then the Riemannian structure s on H is written as s = const%" L%~

Proof: Since the complex structure on H is the standard one and all Hermitian
structures are proportional, we obtain that s = u(dz2+dy?), where p € C°(H).
It remains to find u, using the fact that s is PSL(2,R)-invariant.

For each a € R, the parallel transport x — x + a fixes s, hence p is a function

of y. For any XA € R>9, the map H,(z) = Az also fixes s; since H, (dz? 4 dy?) =
A2dxz? 4 dy?, we have u(\z) = A 2u(z). =
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Geodesics on Riemannian manifold

DEFINITION: Minimising geodesic in a Riemannian manifold is a piecewise
smooth path connecting = to y such that its length is equal to the geodesic
distance. Geodesic is a piecewise smooth path ~ such that for any = € ~
there exists a neighbourhood of = in v which is a minimising geodesic.

EXERCISE: Prove that a big circle in a sphere is a geodesic. Prove
that an interval of a big circle of length < 7 is a minimising geodesic.

25
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Geodesics in Poincaré half-plane

THEOREM: Geodesics on a Poincaré half-plane are vertical straight
lines and their images under the action of SL(2,R).

Proof. Step 1: Let a,b € H be two points satisfying Rea = Reb, and [ the line
connecting these two points. Denote by Il the orthogonal projection from H
to the vertical line connecting a to b. For any tangent vector v € 1,H, one has
|D7(v)| < |v|, and the equality means that v is vertical (prove it). Therefore,
a projection of a path v connecting a to b to [ has length < L(v), and
the equality is realized only if v is a straight vertical interval.

Step 2: For any points a,b in the Poincaré half-plane, there exists an
iIsometry mapping (a,b) to a pair of points (a1,b1) such that Re(a;) =
Re(b1). (Prove it!)

Step 3: Using Step 2, we prove that any geodesic v on a Poincaré half-
plane is obtained as an isometric image of a straight vertical line:
~v=v(vg), v €lso(H) = PSL(2,R) m
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Geodesics in Poincaré half-plane

CLAIM: Let S be a circle or a straight line on a complex plane C = IR{Q, and
S; closure of its image in CP! inder the natural map z—1: 2. Then Sq is
a circle, and any circle in cPl is obtained this way.

Proof: The circle Sr(p) of radius r centered in p € C is given by equation
lp— z| = r, in homogeneous coordinates it is |px — z|2 = r|z|2. This is the zero
set of the pseudo-Hermitian form h(z, z) = |pxz — 2|2 — |z|?, hence it is a circle.
-

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight
lines and half-circles orthogonal to the line imz = 0 In the intersection
points.

Proof: We have shown that geodesics in the Poincaré half-plane are Mobius
transforms of straight lines orthogonal to imz = 0. However, any MOobius
transform preserves angles and maps circles or straight lines to circles or
straight lines. =

27



