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Riemannian manifolds (reminder)

DEFINITION: Let h ∈ Sym2 T ∗M be a symmetric 2-form on a manifold
which satisfies h(x, x) > 0 for any non-zero tangent vector x. Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any x.y ∈ M , and any path γ : [a, b]−→M connecting
x and y, consider the length of γ defined as L(γ) =

∫
γ |
dγ
dt |dt, where |dγdt | =

h(dγdt ,
dγ
dt )

1/2. Define the geodesic distance as d(x, y) = infγ L(γ), where
infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M = Rn, h =
∑
i dx

2
i . Prove that the geodesic distance

coincides with d(x, y) = |x− y|.

EXERCISE: Using partition of unity, prove that any manifold admits a
Riemannian structure.
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Hermitian structures (reminder)

DEFINITION: A Riemannia metric h on an almost complex manifold is called

Hermitian if h(x, y) = h(Ix, Iy).

REMARK: Given any Riemannian metric g on an almost complex manifold,

a Hermitian metric h can be obtained as h = g+ I(g), where I(g)(x, y) =

g(I(x), I(y)).

REMARK: Let I be a complex structure operator on a real vector space

V , and g – a Hermitian metric. Then the bilinear form ω(x, y) := g(x, Iy)

is skew-symmetric. Indeed, ω(x, y) = g(x, Iy) = g(Ix, I2y) = −g(Ix, y) =

−ω(y, x).

DEFINITION: A skew-symmetric form ω(x, y) is called an Hermitian form

on (V, I).

REMARK: In the triple I, g, ω, each element can recovered from the other

two.
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Conformal structure (reminder)

DEFINITION: Let h, h′ be Riemannian structures on M . These Riemannian

structures are called conformally equivalent if h′ = fh, where f is a positive

smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-

lence of Riemannian metrics.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian

manifold, and h, h′ two Hermitian metrics. Then h and h′ are conformally

equivalent. Conversely, any metric conformally equivalent to Hermitian is

Hermitian.

REMARK: The last statement is clear from the definition, and true in any

dimension.
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Conformal structures and almost complex structures (reminder)

REMARK: The following theorem implies that almost complex structures

on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let M be a 2-dimensional oriented manifold. Given a complex

structure I, let ν be the conformal class of its Hermitian metric. Then ν is

determined by I, and it determines I uniquely.

DEFINITION: A Riemann surface is a complex manifold of dimension

1, or (equivalently) an oriented 2-manifold equipped with a conformal

structure. A map from one Riemann surface to another is holomorphic

if and only if it preserves the conformal structure.
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Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group

structure such that the group operations are smooth. Lie group G acts on

a manifold M if the group action is given by the smooth map G×M −→M .

DEFINITION: Let G be a Lie group acting on a manifold M transitively.

Then M is called a homogeneous space. For any x ∈ M the subgroup

Stx(G) = {g ∈ G | g(x) = x} is called stabilizer of a point x, or isotropy

subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one

has M = G/H, where H = Stx(G) is an isotropy subgroup.

Proof: The natural surjective map G−→M putting g to g(x) identifies M

with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then Stx(G)g = Sty(G): all the isotropy groups

are conjugate.
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Isotropy representation (reminder)

DEFINITION: Let M = G/H be a homogeneous space, x ∈ M and Stx(G)

the corresponding stabilizer group. The isotropy representation is the nat-

ural action of Stx(G) on TxM .

DEFINITION: A tensor Φ on a homogeneous manifold M = G/H is called

invariant if it is mapped to itself by all diffeomorphisms which come from

g ∈ G.

REMARK: Let Φx be an isotropy invariant tensor on Stx(G). For any y ∈M
obtained as y = g(x), consider the tensor Φy on TyM obtained as Φy := g(Φ).

The choice of g is not unique, however, for another g′ ∈ G which satisfies

g′(x) = y, we have g = g′h where h ∈ Stx(G). Since Φ is h-invariant, the

tensor Φy is independent from the choice of g.

We proved

THEOREM: Homogeneous tensors on M = G/H are in bijective cor-

respondence with isotropy invariant tensors on TxM, for any x ∈ M .
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Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous manifold

of one of the following types:

positive curvature: Sn (an n-dimensional sphere), equipped with an

action of the group SO(n+ 1) of rotations

zero curvature: Rn (an n-dimensional Euclidean space), equipped with

an action of isometries

negative curvature: SO(1, n)/SO(n), equipped with the natural SO(1, n)-

action. This space is also called hyperbolic space, and in dimension 2 hy-

perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane
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Riemannian metric on space forms (reminder)

LEMMA: Let G = SO(n) act on Rn in a natural way. Then there exists a

unique G-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g, g′ be two G-invariant symmetric 2-forms. Since Sn−1 is an

orbit of G, we have g(x, x) = g(y, y) for any x, y ∈ Sn−1. Multiplying g′ by

a constant, we may assume that g(x, x) = g′(x, x) for any x ∈ Sn−1. Then

g(λx, λx) = g′(λx, λx) for any x ∈ Sn−1, λ ∈ R; however, all vectors can be

written as λx.

COROLLARY: Let M = G/H be a simply connected space form. Then M

admits a unique, up to a constant multiplier, G-invariant Riemannian

form.

Proof: The isotropy group is SO(n − 1) in all three cases, and the previous

lemma can be applied.

REMARK: From now on, all space forms are assumed to be homoge-

neous Riemannian manifolds.
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Some low-dimensional Lie group isomorphisms (reminder)

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie(G) of left-
invariant vector fields. Adjoint representation of G is the standard action
of G on Lie(G). For a Lie group G = GL(n), SL(n), etc., PGL(n), PSL(n),
etc. denote the image of G in GL(Lie(G)) with respect to the adjoint action.

REMARK: This is the same as a quotient G/Z by the centre of G.

DEFINITION: Define SO(1,2) as the group of orthogonal matrices on a
3-dimensional space equipped with a scalar product of signature (1,2), and
U(1,1) as the group of complex linear maps C2 −→ C2 preserving a pseudio-
Hermitian form of signature (1,1).

THEOREM: The groups PU(1,1), PSL(2,R) and SO(1,2) are isomor-
phic.

Proof: Isomorphism PU(1,1) = SO(1,2) will be established later in this lec-
ture. To see PSL(2,R) ∼= SO(1,2), consider the Killing form κ on the Lie
algebra sl(2,R), a, b−→ Tr(ab). Check that it has signature (1,2). Then
the image of SL(2,R) in automorphisms of its Lie algebra is mapped
to SO(sl(2,R), κ) = SO(1,2). Both groups are 3-dimensional, hence it is an
isomorphism.
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Poincaré-Koebe uniformization theorem (reminder)

DEFINITION: A Riemannian manifold of constant curvature is a Rie-

mannian manifold which is locally isometric to a space form.

THEOREM: (Poincaré-Koebe uniformization theorem) Let M be a Rie-

mann surface. Then M admits a unique complete metric of constant

curvature in the same conformal class.

COROLLARY: Any Riemann surface is a quotient of a space form X

by a discrete group of isometries Γ ⊂ Iso(X).

COROLLARY: Any simply connected Riemann surface is conformally

equivalent to a space form.

REMARK: We shall prove some cases of the uniformization theorem in later

lectures.

Today’s subject: classify conformal automorphisms of all space forms.
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Laurent power series

THEOREM: (Laurent theorem)

Let f be a holomorphic function on an annulus (that is, a ring)

R = {z | α < |z| < β}.

Then f can be expressed as a Laurent power series f(z) =
∑
i∈Z z

iai
converging in R.

Proof: Same as Cauchy formula.

REMARK: This theorem remains valid if α = 0 and β =∞.

REMARK: A function ϕ : C∗ −→ C uniquely determines its Laurent

power series. Indeed, residue of zkϕ in 0 is
√
−1 2πa−k−1.

REMARK: Let ϕ : C∗ −→ C be a holomorphic function, and ϕ =
∑
i∈Z z

iai
its Laurent power series. Then ψ(z) := ϕ(z−1) has Laurent polynomial

ψ =
∑
i∈Z z

−iai.
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Affine coordinates on CP1

DEFINITION: We identify CP1 with the set of pairs x : y defined up to

equivalence x : y ∼ λx : λy, for each λ ∈ C∗. This representation is called

homogeneous coordimates. Affine coordinates are 1 : z for x 6= 0, z = y/x

and z : 1 for y 6= 0, z = x/y. The corresponding gluing functions are given by

the map z −→ z−1.

DEFINITION: Meromorphic function is a quotient f/g, where f, g are

holomorphic and g 6= 0.

REMARK: A holomorphic map C−→ CP1 is the same as a pair of maps

f : g up to equivalence f : g ∼ fh : gh. In other words, holomorphic maps

C−→ CP1 are identified with meromorphic functions on C.

REMARK: In homogeneous coordinates, an element

(
a b
c d

)
∈ PSL(2,C)

acts as x : y −→ ax + by : cx + dy. Therefore, in affine coordinates it acts as

z −→ az+b
cz+d.
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Möbius transforms

DEFINITION: Möbius transform is a conformal (that is, holomorphic)

diffeomorphism of CP1.

REMARK: The group PGL(2,C) acts on CP1 holomorphially.

The following theorem will be proven later in this lecture.

THEOREM: The natural map from PGL(2,C) to the group of Möbius

transforms is an isomorphism.

Claim 1: Let ϕ : CP1 −→ CP1 be a holomorphic automorphism, ϕ0 :

C−→ CP1 its restriction to the chart z : 1, and ϕ∞ : C−→ CP1 its restric-

tion 1 : z. We consider ϕ0, ϕ∞ as meromorphic functions on C. Then

ϕ∞ = ϕ0(z−1)−1.
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Möbius transforms and PGL(2,C)

THEOREM: The natural map from PGL(2,C) to the group Aut(CP1)
of Möbius transforms is an isomorphism.

Proof. Step 1: Let ϕ ∈ Aut(CP1). Since PSL(2,C) acts transitively on
pairs of points x 6= y in CP1, by composing ϕ with an appropriate element
in PGL(2,C) we can assume that ϕ(0) = 0 and ϕ(∞ = ∞. This means that
we may consider the restrictions ϕ0 and ϕ∞ of ϕ to the affine charts as a
holomorphic functions on these charts, ϕ0, ϕ∞ : C−→ C.

Step 2: Let ϕ0 =
∑
i>0 aiz

i, a1 6= 0. Claim 1 gives

ϕ∞(z) = ϕ0(z−1)−1 = a1z(1 +
∑
i>2

ai
a1
z−i)−1.

Unless ai = 0 for all i > 2, this Laurent series has singularities in 0 and
cannot be holomorphic. Therefore ϕ0 is a linear function, and it belongs
to PGL(2,C).

Lemma 1: Let ϕ be a Möbius transform fixing ∞ ∈ CP1. Then ϕ(z) = az+b
for some a, b ∈ C and all z = z : 1 ∈ CP1.
Proof: Let A ∈ PGL(2,C) be a map acting on C = CP1\∞ as parallel trans-
port mapping ϕ(0) to 0. Then ϕ ◦ A is a Moebius transform which fixes ∞
and 0. As shown in Step 2 above, it is a linear function.
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Properties of Möbius transform

DEFINITION: A circle in S2 is an orbit of a 1-parametric isometric rotation

subgroup U ⊂ PGL(2,C).

PROPOSITION: The action of PGL(2,C) on CP1 maps circles to cir-

cles.

Proof. Step 1: Consider a pseudo-Hermitian form h on V = C2 of signature

(1,1). Let h+ be a positive definite Hermitian form on V . There exists

a basis x, y ∈ V such that h+ =
√
−1 x ⊗ x +

√
−1 y ⊗ y (that is, x, y is

orthonormal with respect to h+) and h = −
√
−1 αx ⊗ x +

√
−1 βy ⊗ y, with

α > 0, β < 0 real numbers. Then {z | h(z, z) = 0} is invariant under the

rotation x, y −→ x, e
√
−1 θy, hence it is a circle.

Step 2: Clearly, all circles are obtained this way.

Step 3: PGL(2,C) maps pseudo-Hermitian forms to pseudo-Hermitian forms

of the same signature, and therefore preserves circles.
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Orbits of compact one-parametric subgroups in PSL(2,C)

LEMMA: Let G ∼= S1 be a compact one-parametric subgroup in PSL(2,C).

Then any G-orbit in CP1 is a circle.

Proof. Step 1: Let V = C2, and consider the natural projection map π :

SL(V )−→ PSL(2,C) = SL(V )/±1. Then G̃ = π−1(G) is compact. Choose a

G̃-invariant Hermitian metric h1 on V , and let h be the standard Hermitiann

metric. Since GL(2,C) acts on the set of Hermitian metrics transitively (prove

it), there exists u ∈ GL(V ) such that u(h) = h1. By definition, circles on CP1

are orbits of one-parametric subgroups in U(V, h). Since u(G̃) is a one-

parametric subgroup in U(V, h), its orbit is a circle.

Step 2: From Step 1, we obtain that any orbit of G is u−1(circle). Since u−1

is a Moebius transform, and Moebius transforms preserve circles, this orbit is

a circle.
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Conformal automorphisms of C

THEOREM: (Riemann removable singularity theorem) Let f : C−→ C
be a continuous function which is holomorphic outside of a finite set. Then

f is holomorphic.

Proof: Use the Cauchy formula.

THEOREM: All conformal automorphisms of C can be expressed by

z −→ az + b, where a, b are complex numbers, a 6= 0.

Proof: Let ϕ be a conformal automorphism of C. The Riemann removable

singularity theorem implies that ϕ can be extended to a holomorphic au-

tomorphism of CP1. Indeed, CP1 is obtained as a 1-point compactification

of C, and any continuous map from C to C is extended to a continuous map

on CP1. Now, Lemma 1 implies that ϕ(z) = az + b.
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Schwartz lemma

CLAIM: (maximum principle) Let f be a holomorphic function defined

on an open set U . Then f cannot have strict maxima in U. If f has

non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.

LEMMA: (Schwartz lemma) Let f : ∆−→∆ be a map from disk to itself

fixing 0. Then |f ′(0)| 6 1, and equality can be realized only if f(z) = αz

for some α ∈ C, |α| = 1.

Proof: Consider the function ϕ := f(z)
z . Since f(0) = 0, it is holomorphic,

and since f(∆) ⊂ ∆, on the boundary ∂∆ we have |ϕ||∂∆ 6 1. Now, the

maximum principle implies that |f ′(0)| = |ϕ(0)| 6 1, and equality is realized

only if ϕ = const.
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Conformal automorphisms of the disk act transitively

CLAIM: Let ∆ ⊂ C be the unit disk. Then the group Aut(∆) of its

holomorphic automorphisms acts on ∆ transitively.

Proof. Step 1: Let Va(z) = z−a
1−az for some a ∈ ∆. Then Va(0) = −a. To

prove transitivity, it remains to show that Va(∆) = ∆.

Step 2: For |z| = 1, we have

|Va(z)| = |Va(z)||z| =
∣∣∣∣zz − az1− az

∣∣∣∣ =
∣∣∣∣1− az1− az

∣∣∣∣ = 1.

Therefore, Va preserves the circle. Maximum principle implies that Va maps

its interior to its interior.

Step 3: To prove invertibility, we interpret Va as an element of PGL(2,C).
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Transitive action is determined by a stabilizer of a point

Lemma 2: Let M = G/H be a homogeneous space, and Ψ : G1 −→G a

homomorphism such that G1 acts on M transitively and Stx(G1) = Stx(G).

Then G1 = G.

Proof: Since any element in ker Ψ belongs to Stx(G1) = Stx(G) ⊂ G, the

homomorphism Ψ is injective. It remais only to show that Ψ is surjective.

Let g ∈ G. Since G1 acts on M transitively, gg1(x) = x for some g1 ∈ G1.

Then gg1 ∈ Stx(G1) = Stx(G) ⊂ imG1. This gives g ∈ G1.
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Group of conformal automorphisms of the disk

REMARK: The group PU(1,1) ⊂ PGL(2,C) of unitary matrices preserving a
pseudo-Hermitian form h of signature (1,1) acts on a disk {l ∈ CP1 | h(l, l) >
0} by holomorphic automorphisms.

COROLLARY: Let ∆ ⊂ C be the unit disk, Aut(∆) the group of its con-
formal automorphisms, and Ψ : PU(1,1)−→ Aut(∆) the map constructed
above. Then Ψ is an isomorphism.

Proof: We use Lemma 2. Both groups act on ∆ transitively, hence it suffices
only to check that Stx(PU(1,1)) = S1 and Stx(Aut(∆)) = S1. The first
isomorphism is clear, because the space of unitary automorphisms fixing a
vector v is U(v⊥). The second isomorphism follows from Schwartz lemma.

COROLLARY: Let h be a homogeneous metric on ∆ = PU(1,1)/S1. Then
(∆, h) is conformally equivalent to (∆,flat metric).

Proof: The group Aut(∆) = PU(1,1) acts on ∆ holomorphically, that is,
preserving the conformal structure of the flat metric. However, homoge-
neous conformal structure on PU(1,1)/S1 is unique for the same reason the
homogeneous metric is unique.

22



Riemann surfaces, lecture 6 M. Verbitsky

Upper half-plane

REMARK: The map z −→ −
√
−1 (z − 1)−1 induces a diffeomorphism from

the unit disc in C to the upper half-plane H.

PROPOSITION: The group Aut(∆) acts on the upper half-plane H as

z
A−→ az+b

cz+d, where a, b, c, d ∈ R, and det

(
a b
c d

)
> 0.

REMARK: The group of such A is naturally identified with PSL(2,R) ⊂
PSL(2,C).

Proof: The group PSL(2,R) preserves the line im z = 0, hence acts on H by

conformal automorphisms. The stabilizer of a point is S1 (prove it). Now,

Lemma 2 implies that PSL(2,R) = PU(1,1).

REMARK: We have shown that H = SO(1,2)/S1, hence H is conformally

equivalent to the hyperbolic space.
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Upper half-plane as a Riemannian manifold

DEFINITION: Poincaré half-plane is the upper half-plane equipped with a

homogeneous metric of constant negative curvature constructed above.

THEOREM: Let (x, y) be the usual coordinates on the upper half-plane H.

Then the Riemannian structure s on H is written as s = const dx
2+dy2

y2 .

Proof: Since the complex structure on H is the standard one and all Hermitian

structures are proportional, we obtain that s = µ(dx2+dy2), where µ ∈ C∞(H).

It remains to find µ, using the fact that s is PSL(2,R)-invariant.

For each a ∈ R, the parallel transport x−→ x+ a fixes s, hence µ is a function

of y. For any λ ∈ R>0, the map Hλ(x) = λx also fixes s; since Hλ(dx2 +dy2) =

λ2dx2 + dy2, we have µ(λx) = λ−2µ(x).
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Geodesics on Riemannian manifold

DEFINITION: Minimising geodesic in a Riemannian manifold is a piecewise

smooth path connecting x to y such that its length is equal to the geodesic

distance. Geodesic is a piecewise smooth path γ such that for any x ∈ γ

there exists a neighbourhood of x in γ which is a minimising geodesic.

EXERCISE: Prove that a big circle in a sphere is a geodesic. Prove

that an interval of a big circle of length 6 π is a minimising geodesic.

25



Riemann surfaces, lecture 6 M. Verbitsky

Geodesics in Poincaré half-plane

THEOREM: Geodesics on a Poincaré half-plane are vertical straight

lines and their images under the action of SL(2,R).

Proof. Step 1: Let a, b ∈ H be two points satisfying Re a = Re b, and l the line

connecting these two points. Denote by Π the orthogonal projection from H
to the vertical line connecting a to b. For any tangent vector v ∈ TzH, one has

|Dπ(v)| 6 |v|, and the equality means that v is vertical (prove it). Therefore,

a projection of a path γ connecting a to b to l has length 6 L(γ), and

the equality is realized only if γ is a straight vertical interval.

Step 2: For any points a, b in the Poincaré half-plane, there exists an

isometry mapping (a, b) to a pair of points (a1, b1) such that Re(a1) =

Re(b1). (Prove it!)

Step 3: Using Step 2, we prove that any geodesic γ on a Poincaré half-

plane is obtained as an isometric image of a straight vertical line:

γ = v(γ0), v ∈ Iso(H) = PSL(2,R)
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Geodesics in Poincaré half-plane

CLAIM: Let S be a circle or a straight line on a complex plane C = R2, and

S1 closure of its image in CP1 inder the natural map z −→ 1 : z. Then S1 is

a circle, and any circle in CP1 is obtained this way.

Proof: The circle Sr(p) of radius r centered in p ∈ C is given by equation

|p− z| = r, in homogeneous coordinates it is |px− z|2 = r|x|2. This is the zero

set of the pseudo-Hermitian form h(x, z) = |px− z|2− |x|2, hence it is a circle.

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight

lines and half-circles orthogonal to the line im z = 0 in the intersection

points.

Proof: We have shown that geodesics in the Poincaré half-plane are Möbius

transforms of straight lines orthogonal to im z = 0. However, any Möbius

transform preserves angles and maps circles or straight lines to circles or

straight lines.
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