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Riemannian manifolds (reminder)

DEFINITION: Let h ∈ Sym2 T ∗M be a symmetric 2-form on a manifold
which satisfies h(x, x) > 0 for any non-zero tangent vector x. Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any x.y ∈ M , and any path γ : [a, b]−→M connecting
x and y, consider the length of γ defined as L(γ) =

∫
γ |
dγ
dt |dt, where |dγdt | =

h(dγdt ,
dγ
dt )

1/2. Define the geodesic distance as d(x, y) = infγ L(γ), where
infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M = Rn, h =
∑
i dx

2
i . Prove that the geodesic distance

coincides with d(x, y) = |x− y|.

EXERCISE: Using partition of unity, prove that any manifold admits a
Riemannian structure.
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Conformal structures and almost complex structures (reminder)

REMARK: The following theorem implies that almost complex structures

on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let M be a 2-dimensional oriented manifold. Given a complex

structure I, let ν be the conformal class of its Hermitian metric. Then ν is

determined by I, and it determines I uniquely.

DEFINITION: A Riemann surface is a complex manifold of dimension

1, or (equivalently) an oriented 2-manifold equipped with a conformal

structure. A map from one Riemann surface to another is holomorphic

if and only if it preserves the conformal structure.
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Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group

structure such that the group operations are smooth. Lie group G acts on

a manifold M if the group action is given by the smooth map G×M −→M .

DEFINITION: Let G be a Lie group acting on a manifold M transitively.

Then M is called a homogeneous space. For any x ∈ M the subgroup

Stx(G) = {g ∈ G | g(x) = x} is called stabilizer of a point x, or isotropy

subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one

has M = G/H, where H = Stx(G) is an isotropy subgroup.

Proof: The natural surjective map G−→M putting g to g(x) identifies M

with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then Stx(G)g = Sty(G): all the isotropy groups

are conjugate.
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Isotropy representation (reminder)

DEFINITION: Let M = G/H be a homogeneous space, x ∈ M and Stx(G)

the corresponding stabilizer group. The isotropy representation is the nat-

ural action of Stx(G) on TxM .

DEFINITION: A tensor Φ on a homogeneous manifold M = G/H is called

invariant if it is mapped to itself by all diffeomorphisms which come from

g ∈ G.

REMARK: Let Φx be an isotropy invariant tensor on Stx(G). For any y ∈M
obtained as y = g(x), consider the tensor Φy on TyM obtained as Φy := g(Φ).

The choice of g is not unique, however, for another g′ ∈ G which satisfies

g′(x) = y, we have g = g′h where h ∈ Stx(G). Since Φ is h-invariant, the

tensor Φy is independent from the choice of g.

We proved

THEOREM: Homogeneous tensors on M = G/H are in bijective corre-

spondence with isotropy invariant tensors on TxM, for any x ∈M .
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Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous manifold

of one of the following types:

positive curvature: Sn (an n-dimensional sphere), equipped with an

action of the group SO(n+ 1) of rotations

zero curvature: Rn (an n-dimensional Euclidean space), equipped with

an action of isometries

negative curvature: SO(1, n)/SO(n), equipped with the natural SO(1, n)-

action. This space is also called hyperbolic space, and in dimension 2 hy-

perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane
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Riemannian metric on space forms (reminder)

LEMMA: Let G = SO(n) act on Rn in a natural way. Then there exists a

unique G-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g, g′ be two G-invariant symmetric 2-forms. Since Sn−1 is an

orbit of G, we have g(x, x) = g(y, y) for any x, y ∈ Sn−1. Multiplying g′ by

a constant, we may assume that g(x, x) = g′(x, x) for any x ∈ Sn−1. Then

g(λx, λx) = g′(λx, λx) for any x ∈ Sn−1, λ ∈ R; however, all vectors can be

written as λx.

COROLLARY: Let M = G/H be a simply connected space form. Then M

admits a unique, up to a constant multiplier, G-invariant Riemannian

form.

Proof: The isotropy group is SO(n − 1) in all three cases, and the previous

lemma can be applied.

REMARK: From now on, all space forms are assumed to be homoge-

neous Riemannian manifolds.
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Poincaré-Koebe uniformization theorem (reminder)

DEFINITION: A Riemannian manifold of constant curvature is a Rie-

mannian manifold which is locally isometric to a space form.

THEOREM: (Poincaré-Koebe uniformization theorem) Let M be a Rie-

mann surface. Then M admits a unique complete metric of constant

curvature in the same conformal class.

COROLLARY: Any Riemann surface is a quotient of a space form X

by a discrete group of isometries Γ ⊂ Iso(X).

COROLLARY: Any simply connected Riemann surface is conformally

equivalent to a space form.

REMARK: We shall prove some cases of the uniformization theorem in later

lectures.
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Möbius transforms (reminder)

DEFINITION: Möbius transform is a conformal (that is, holomorphic)
diffeomorphism of CP1.

REMARK: The group PGL(2,C) acts on CP1 holomorphially.

THEOREM: The natural map from PGL(2,C) to the group Aut(CP1)
of Möbius transforms is an isomorphism.

DEFINITION: A circle in S2 is an orbit of a 1-parametric isometric rotation
subgroup U ⊂ PGL(2,C).

PROPOSITION: The action of PGL(2,C) on CP1 maps circles to cir-
cles.

Proof: Consider a pseudo-Hermitian form h on V = C2 of signature (1,1). Let
h+ be a positive definite Hermitian form on V . There exists a basis x, y ∈ V
such that h+ =

√
−1x⊗x+

√
−1y⊗y (that is, x, y is orthonormal with respect

to h+) and h = −
√
−1 αx⊗ x +

√
−1 βy ⊗ y, with α > 0, β < 0 real numbers.

Then {z | h(z, z) = 0} is invariant under the rotation x, y −→ x, e
√
−1 θy, hence

it is a circle.
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Conformal automorphisms of C (reminder)

Lemma 1: Let ϕ be a Möbius transform fixing ∞ ∈ CP1. Then ϕ(z) = az+b

for some a, b ∈ C and all z = z : 1 ∈ CP1.

THEOREM: (Riemann removable singularity theorem) Let f : C−→ C
be a continuous function which is holomorphic outside of a finite set. Then

f is holomorphic.

Proof: Use the Cauchy formula.

THEOREM: All conformal automorphisms of C can be expressed by

z −→ az + b, where a, b are complex numbers, a 6= 0.

Proof: Let ϕ be a conformal automorphism of C. The Riemann removable

singularity theorem implies that ϕ can be extended to a holomorphic au-

tomorphism of CP1. Indeed, CP1 is obtained as a 1-point compactification

of C, and any continuous map from C to C is extended to a continuous map

on CP1. Now, Lemma 1 implies that ϕ(z) = az + b.
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Schwartz lemma (reminder)

CLAIM: (maximum principle) Let f be a holomorphic function defined

on an open set U . Then f cannot have strict maxima in U. If f has

non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.

LEMMA: (Schwartz lemma) Let f : ∆−→∆ be a map from disk to itself

fixing 0. Then |f ′(0)| 6 1, and equality can be realized only if f(z) = αz

for some α ∈ C, |α| = 1.

Proof: Consider the function ϕ := f(z)
z . Since f(0) = 0, it is holomorphic,

and since f(∆) ⊂ ∆, on the boundary ∂∆ we have |ϕ||∂∆ 6 1. Now, the

maximum principle implies that |f ′(0)| = |ϕ(0)| 6 1, and equality is realized

only if ϕ = const.
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Conformal automorphisms of the disk (reminder)

CLAIM: Let ∆ ⊂ C be the unit disk. Then the group Aut(∆) of its

holomorphic automorphisms acts on ∆ transitively.

Proof: Let Va(z) = z−a
1−az for some a ∈ ∆. Then Va(0) = −a. To prove

transitivity, it remains to show that Va(∆) = ∆, which is implied from

|Va(z)| = |Va(z)||z| =
∣∣∣∣zz − az1− az

∣∣∣∣ =
∣∣∣∣1− az1− az

∣∣∣∣ = 1.

REMARK: The group PU(1,1) ⊂ PGL(2,C) of unitary matrices preserving a

pseudo-Hermitian form h of signature (1,1) acts on a disk {l ∈ CP1 | h(l, l) >

0} by holomorphic automorphisms.

COROLLARY: Let ∆ ⊂ C be the unit disk, Aut(∆) the group of its con-

formal automorphisms, and Ψ : PU(1,1)−→ Aut(∆) the map constructed

above. Then Ψ is an isomorphism.

COROLLARY: Let h be a homogeneous metric on ∆ = PU(1,1)/S1. Then

(∆, h) is conformally equivalent to (∆,flat metric).
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Upper half-plane (reminder)

REMARK: The map z −→ −
√
−1 (z − 1)−1 induces a diffeomorphism from

the unit disc in C to the upper half-plane H.

PROPOSITION: The group Aut(∆) acts on the upper half-plane H as

z
A−→ az+b

cz+d, where a, b, c, d ∈ R, and det

(
a b
c d

)
> 0.

REMARK: The group of such A is naturally identified with PSL(2,R) ⊂
PSL(2,C).

REMARK: We have shown that H = SO(1,2)/S1, hence H is conformally

equivalent to the hyperbolic space.
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Upper half-plane as a Riemannian manifold (reminder)

DEFINITION: Poincaré half-plane is the upper half-plane equipped with a

homogeneous metric of constant negative curvature constructed above.

THEOREM: Let (x, y) be the usual coordinates on the upper half-plane H.

Then the Riemannian structure s on H is written as s = const dx
2+dy2

y2 .

Proof: Since the complex structure on H is the standard one and all Hermitian

structures are proportional, we obtain that s = µ(dx2+dy2), where µ ∈ C∞(H).

It remains to find µ, using the fact that s is PSL(2,R)-invariant.

For each a ∈ R, the parallel transport x−→ x+ a fixes s, hence µ is a function

of y. For any λ ∈ R>0, the map Hλ(x) = λx also fixes s; since Hλ(dx2 +dy2) =

λ2dx2 + dy2, we have µ(λx) = λ−2µ(x).
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Geodesics on Riemannian manifold (reminder)

THEOREM: Geodesics on a Poincaré half-plane are vertical straight
lines and their images under the action of SL(2,R).

CLAIM: Let S be a circle or a straight line on a complex plane C = R2, and
S1 closure of its image in CP1 inder the natural map z −→ 1 : z. Then S1 is
a circle, and any circle in CP1 is obtained this way.

Proof: The circle Sr(p) of radius r centered in p ∈ C is given by equation
|p− z| = r, in homogeneous coordinates it is |px− z|2 = r|x|2. This is the zero
set of the pseudo-Hermitian form h(x, z) = |px− z|2− |x|2, hence it is a circle.

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight
lines and half-circles orthogonal to the line im z = 0 in the intersection
points.

Proof: We have shown that geodesics in the Poincaré half-plane are Möbius
transforms of straight lines orthogonal to im z = 0. However, any Möbius
transform preserves angles and maps circles or straight lines to circles or
straight lines.
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Poincaré metric on disk (reminder)

DEFINITION: Poincaré metric on a unit disk ∆ ⊂ C is an Aut(∆)-invariant

metric (it is unique up to a constant multiplier).

DEFINITION: Let f : M −→M1 be a map of metric spaces. Then f is

called C-Lipschitz if d(x, y) > Cd(f(x), f(y)). A map is called Lipschitz if it

is C-Lipschitz for some C > 0.

THEOREM: (Schwartz-Pick lemma)

Any holomorphic map ϕ : ∆−→∆ from a unit disk to itself is 1-

Lipschitz with respect to Poicaré metric.

Proof. Step 1: We need to prove that for each x ∈ ∆ the norm of the

differential satisfies |Dϕx| 6 1. Since the automorphism group acts on ∆

transitively, it suffices to prove that |Dϕx| 6 1 when x = 0 and ϕ(x) = 0.

Step 2: This is Schwartz lemma.
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Kobayashi pseudometric (reminder)

DEFINITION: Pseudometric on M is a function d : M ×M −→ R>0 which
is symmetric: d(x, y) = d(y, x) and satisfies the triangle inequality d(x, y) +
d(y, z) > d(x, z).

REMARK: Let D be a set of pseudometrics. Then dmax(x, y) := supd∈D d(x, y)
is also a pseudometric.

DEFINITION: The Kobayashi pseudometric on a complex manifold M is
dmax for the set D of all pseudometrics such that any holomorphic map from
the Poincaré disk to M is distance-decreasing.

EXERCISE: Prove that the distance between points x, y in Kobayashi
pseudometric is infimum of the Poincaré distance over all sets of
Poincaré disks connecting x to y.

EXERCISE: Prove that the Kobayashi pseudometric on C vanishes.

CLAIM: Any holomorphic map X
ϕ−→ Y is 1-Lipschitz with respect to

the Kobayashi pseudometric.

Proof: If x ∈ X is connected to x′ by a sequence of Poincare disks ∆1, ...,∆n,
then ϕ(x) is connected to ϕ(x′) by ϕ(∆1), ..., ϕ(∆n).
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Kobayashi hyperbolic manifolds (reminder)

COROLLARY: Let B ⊂ Cn be a unit ball, and x, y ∈ B points with coordi-

nates x = (x1, ..., xn), y = (y1, ..., yn). Since xi, yi belongs to ∆, it makes sense

to compute the Poincare distance dP (xi, yi). Then dK(x, y) > maxidP (xi, yi).

Proof: Each of projection maps Πi : B −→∆ is 1-Lipshitz.

DEFINITION: A variety is called Kobayashi hyperbolic if the Kobayashi

pseudometric dK is non-degenerate.

DEFINITION: A domain in Cn is an open subset. A bounded domain is

an open subset contained in a ball.

COROLLARY: Any bounded domain Ω in Cn is Kobayashi hyperbolic.

Proof: Without restricting generality, we may assume that Ω ⊂ B where B is

an open ball. Then the Kobayashi distance in Ω is > that in B. However, the

Kobayashi distance in B is bounded by the metric d(x, y) := maxidP (xi, yi) as

follows from above.
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Uniform convergence for Lipschitz maps (reminder)

DEFINITION: A sequence of maps fi : M −→N between metric spaces uni-
formly converges (or converges uniformly on compacts) to f : M −→N
if for any compact K ⊂M , we have lim

i→∞
supx∈K d(fi(x), f(x)) = 0.

Claim 1: Suppose that a sequence fi : M −→N of 1-Lipschitz maps con-
verges to f pointwise in a countable dense subset M ′ ⊂ M . Then fi con-
verges to f uniformly on compacts.

Proof: Let K ⊂ M be a compact set, and Nε ⊂ M ′ a finite subset such that
K is a union of ε-balls centered in Nε (such Nε is called an ε-net). Then
there exists N such that supx∈Nε d(fN+i(x), f(x)) < ε for all i > 0. Since fi
are 1-Lipschitz, this implies that

sup
y∈K

d(fN+i(y), f(y) 6

6 sup
x∈Nε

d(fN+i(x), f(x)) + inf
x∈Nε

(d(fN+i(x), y) + d(f(x), y)) 6 3ε.

EXERCISE: Prove that the limit f is also 1-Lipschitz.

REMARK: This proof works when M is a pseudo-metric space, as long
as N is a metric space.
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Arzela-Ascoli theorem for Lipschitz maps (reminder)

DEFINITION: Let M , N be metric spaces. A subset B ⊂ M is bounded

if it is contained in a ball. A family {fα} of functions fα : M −→N is called

uniformly bounded on compacts if for any compact subset K ⊂ M , there

is a bounded subset CK ⊂ N such that fα(K) ⊂ CK for any element fα of the

family.

THEOREM: (Arzela-Ascoli for Lipschitz maps)

Let F := {fα} be an infinite uniformly bounded set of 1-Lipschitz maps fα :

M −→ C, where M is a pseudo-metric space. Assume that M has countable

base of open sets and can be obtained as a countable union of compact

subsets. Then there is a sequence {fi} ⊂ F which converges to f :

M −→ C uniformly.

REMARK: The limit f is clearly also 1-Lipschitz.
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Normal families of holomorphic functions (reminder)

DEFINITION: Let M be a complex manifold. A family F := {fα} of holo-
morphic functions fα : M −→ C is called normal family if F is uniformly
bounded on compact subsets.

THEOREM: (Montel’s theorem)
Let M be a complex manifold with countable base, and F a normal, infinite
family of holomorphic functions. Then there is a sequence {fi} ⊂ F which
converges to f : M −→ C uniformly, and f is holomorphic.

Proof. Step 1: As in the first step of Arzela-Ascoli, it suffices to prove
Montel’s theorem on a subset of M where F is bounded. Therefore, we may
assume that all fα map M into a disk ∆.

Step 2: All fα are 1-Lipschitz with respect to Kobayashi metric. Therefore,
Arzela-Ascoli theorem can be applied, giving a uniform limit f = lim fi.

Step 3: A uniform limit of holomorphic functions is holomorphic by Cauchy
formula.

REMARK: The sequence f = lim fi converges uniformly with all deriva-
tives, again by Cauchy formula.
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Riemann mapping theorem

THEOREM: Let Ω ⊂∆ be a simply connected domain. Then Ω is biholo-
morphic to ∆.

Idea of a proof: We consider the Kobayashi metric on Ω and ∆, and let F
be the set of all injective holomorphic maps Ω−→∆. Consider x ∈ Ω, and
let f be a map with |dfx| maximal in the sense of Kobayashi metric. Such f

exists by Montel’s theorem. We prove that f is an isometry, and hence
biholomorphic.

PROPOSITION: Let H be the set of holomorphic maps f : Ω1 −→Ω2
between Riemann surfaces, equipped with uniform topology, and H0 its subset
consisting of injective maps. Then H0 is closed in H.

Proof: Let fi be a sequence of injective maps converging to f : Ω1 −→Ω2
which is not injective. Then f(a) = f(b) for some a 6= b in Ω1. Choose open
disks A and B containing a and b. Then the Proposition is implied by the
following lemma.

LEMMA: Let R be the set of all pairs of distinct holomorphic functions
f, g : ∆−→ C continuously extended to the boundary such that f(x) = g(x)
for some x ∈∆. Then R is open in uniform topology.
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The set of non-injective maps is open

LEMMA: Let R be the set of all pairs of distinct holomorphic functions

f, g : ∆−→ C continuously extended to the boundary such that f(x) = g(x)

for some x ∈∆. Then R is open in uniform topology.

Proof. Step 1: The set of all points z ∈ ∆ where f = g is discrete (prove

it). This implies that we can replace ∆ by a smaller disc containing x

such that f 6= g everywhere on its boundary.

Step 2: Consider the function α(f−g)′
f−g on ∆. This function has a simple

pole in all the points where f = g. Therefore, nf,g := 1
π
√
−1

∫
∂∆αdz is equal

to the number of points x ∈∆ such that f(x) = g(x).

Step 3: Since the integral is continuous in unform topology, this number

is locally constant on the space of pairs such f, g : ∆−→ C. Therefore,

the set R of all f, g with nf,g 6= 0 is open.
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Coverings

DEFINITION: Constant sheaf with coefficients in a set S is a sheaf F
such that for any U ⊂ M , the space of sections of F is S, independent on

U . Locally constant sheaf is a sheaf F such that each point x ∈ M has a

neighbourhood U ⊂M such that the restriction of F to U is constant.

DEFINITION: A continuous map π : M̃ −→M of topological spaces is a

covering if π is locally a diffeomorphism, and the space of sections of π is a

locally constant sheaf.

EXAMPLE: The map x−→ x2 is a covering from C∗ := C\0 to itself (prove

it).
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Homotopy lifting principle

DEFINITION: A topological space X is locally path connected if for each
x ∈ X and each neighbourhood U 3 x, there exists a smaller neighbourhood
W 3 x which is path connected.

THEOREM: (homotopy lifting principle)
Let X be a simply connected, locally path connected topological space, and
M̃ −→M a covering map. Then for each continuous map X −→M , there
exists a lifting X −→ M̃ making the following diagram commutative.

X - M̃

M
?-

COROLLARY: Let ϕ : Ω−→ C∗ be a holomorphic map from a simply
connected domain Ω. Then there exists a holomorphic map ϕ1 : Ω−→ C∗
such that for all z ∈∆, ϕ(z) = ϕ1(z)2.

Proof: We apply homotopy lifting principle to X = Ω, M = M̃ = C∗, and
M̃ −→M mapping x to x2.

REMARK: We denote ϕ1(z) by
√
ϕ(z), for obvious reasons.
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Kobayashi metric and the map x−→ x2

CLAIM: Consider a non-bijective holomorphic map ϕ : ∆−→∆ from Poincare
disk to itself. Then |dϕ| < 1 at each point, where dϕ is a norm of an operator
dϕ : Tx∆−→ Tϕ(x)∆ taken with respect to the Poincare metric.

Proof: Let ϕ : ∆−→∆ be a holomorphic map which satisfies |dϕ| = 1 at
x ∈ ∆. Replacing ϕ by γ1 ◦ ϕ ◦ γ2 if necessary, where γi are biholomorphic
isometries of ∆, we may assume that x = 0 and ϕ(x) = 0. By Schwartz
lemma for such ϕ, |dϕ(0)| = 1 implies that ϕ is a linear biholomorphic map.

Corollary 1: Let ϕ : ∆−→∆\0 be a holomorphic function, and
√
ϕ a

holomorphic function defined above. Let |dϕ|(x) denote the norm of the
operator dϕ at x ∈ ∆ computed with respect to the Poincare metric on ∆.
Then |dϕ|(x) < |d√ϕ|(x) for any x ∈∆.

Proof: Let ψ(x) = x2. By the claim above, |dψ|(x) < 1 for all x ∈ ∆.
Using the chain rule, we obtain that dϕ = dψ ◦ d√ϕ. which gives |dϕ|(x) =
|dψ|(√ϕ(x))|d√ϕ|(x), hence

|d√ϕ|(x) =
|dϕ|(x)|

|dψ|(√ϕ(x))
> |dϕ|(x).
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Riemann mapping theorem

THEOREM: Let Ω ⊂∆ be a simply connected domain. Then Ω is biholo-

morphic to ∆.

Proof. Step 1: Consider the Kobayashi metric on Ω and ∆, and let F be

the set of all injective holomorphic maps Ω−→∆. Consider x ∈ Ω, and let

f be a map with |df |(x) maximal in the sense of Kobayashi metric. Such f

exists by Montel’s theorem. Since f lies in the closure of F, and the set

of injective maps is closed, f is injective.

Step 2: It remains to show that f is surjective. Suppose it is not surjective:

z /∈ f(Ω). Taking a composition of f and an isometry of the Poincare disk

does not affect |df |(x), hence we may assume that z = 0. Then the function√
f is a well defined holomorphic map from Ω to ∆. By Corollary 1,

|d
√
f |(x) > |df |(x), which is impossible, because it |df |(x) is maximal.
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Normal families in complete generality

DEFINITION: A set of holomorphic maps fα : X −→ Y is called a normal

family if any sequence {fi} in {fα} has a subsequence converging unformly

on compacts.

THEOREM: Let fα : X −→ Y be a family of holomorphic maps such that for

any point x ∈ X there exists its neighbourhood with compact closure K ⊂ X

and a Kobayashi hyperbolic open subset VK ⊂ Y such that all fα map K to

Vk. Then fα is a normal family.

EXERCISE: Prove it.
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Fatou and Julia sets

DEFINITION: Let f : CP1 −→ CP1 be a rational map, and {f i} = {f, f ◦
f, f ◦ f ◦ f, ...} the set of all iterations of f . Fatou set of f is the set of
all points x ∈ CP1 such that for some neighbourhood U 3 x, the restriction
{f i|U } is a normal family, and Julia set is a complement to Fatou set.

EXAMPLE: For the map f(x) = x2, Julia set is the unit circle, and the
Fatou set is its complement (prove it).

DEFINITION: Attractor point z is a fixed point of f such that |df |(z) < 1;
the attractor basin for z is the set of all x ∈ CP1 such that limi f

i(x) = z.

CLAIM: For any fixed point z, its attractor basin belongs to the Fatou
set.

Proof: Indeed, since limi f
i(x) = z for any point in attractor basin U , {f i}

is a normal family on U (pointwise convergence is equivalent to uniform
convergence for bounded holomorphic functions by Arzela-Ascoli the-
orem).

DEFINITION: Newton iteration for solving the polynomial equation g(z) =
0: a solution is obtained as a limit limi f

i(z), where f(z) = z − g(z)
g′(z). Indeed,

solutions of g(z) = 0 are attracting fixed points of f (check this).
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Fatou and Julia sets for f(z) = 1+2z3

3z2

We apply the Newton iteration method to g(z) = z3 − 1.

Julia set (in white) for the map f(z) = 1+2z3

3z2 = z − g(z)
g′(z). Coloring of Fatou

set according to attractor (the roots of g(z) = z3 − 1).
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Julia set for f(z) = z2 −
√
−1

Julia set for f(z) = z2 −
√
−1 is called dendrite.
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Julia set for f(z) = z2 + 0.12 + 0.6
√
−1
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San Marco fractal

San Marco fractal is the Julia set for f(z) = z2 − 0.75

33



Riemann surfaces, lecture 8 M. Verbitsky

Mandelbrot set

DEFINITION: Mandelbrot set is the set of all c such that 0 belongs to the
Fatou set of f(z) = z2 + c.
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Properties of Fatou and Julia sets

REMARK: Let f : CP1 −→ CP1 be a holomorphic map. Then the Fatou

F (f) and Julia set J(f) of f are f-invariant.

LEMMA: (Iteration lemma) For each k, J(f) = J(fk), where fk is k-th

iteration of f.

Proof. Step 1: Clearly, F (fk) ⊂ F (f), because {fk, f2k, f3k, ...} is compact

when {f, f2, f3, ...} is compact.

Proof: Conversely, suppose that X = F (fk); then {fk, f2k, f3k, ...} is compact,

but then {f, fk+1, f2k+1, f3k+1, ...} is also compact as a continuous image

image of a compact (the composition is continuous in uniform topology),

same for {f2, fk+2, f2k+2, f3k+2, ...}, and so on. Then {f, f2, f3, ...} is obtained

as a union of k compact sets. Therefore, F (f) ⊂ F (fk).
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Properties of Fatou and Julia sets (2)

THEOREM: Julia set of polynomial map f : CP1 −→ CP1 is non-empty,

unless deg f 6 1.

Proof: Let ∆ ⊂ CP1, and n(g) the number of critical points of a holomorphi

function g in ∆. Then n(g) = 1
π
√
−1

∫
∂∆

g′
g dz, and this number is locally

constant in uniform topology if g has no critical points on the boundary.

Since the number of critical points of f i is ideg f −1, it converges to infinity,

hence f i cannot converge to a holomorphic function everywhere.
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