Riemann surfaces

lecture 7: Riemann mapping theorem

Misha Verbitsky

Université Libre de Bruxelles December 8, 2015

Riemannian manifolds (reminder)

DEFINITION: Let $h \in \text{Sym}^2 T^*M$ be a symmetric 2-form on a manifold which satisfies h(x,x) > 0 for any non-zero tangent vector x. Then h is called **Riemannian metric**, of **Riemannian structure**, and (M,h) **Riemannian manifold**.

DEFINITION: For any $x.y \in M$, and any path γ : $[a,b] \longrightarrow M$ connecting x and y, consider **the length** of γ defined as $L(\gamma) = \int_{\gamma} |\frac{d\gamma}{dt}| dt$, where $|\frac{d\gamma}{dt}| = h(\frac{d\gamma}{dt}, \frac{d\gamma}{dt})^{1/2}$. Define **the geodesic distance** as $d(x,y) = \inf_{\gamma} L(\gamma)$, where infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality and defines metric on M.

EXERCISE: Prove that this metric induces the standard topology on M.

EXAMPLE: Let $M = \mathbb{R}^n$, $h = \sum_i dx_i^2$. Prove that the geodesic distance coincides with d(x, y) = |x - y|.

EXERCISE: Using partition of unity, **prove that any manifold admits a Riemannian structure.**

Conformal structures and almost complex structures (reminder)

REMARK: The following theorem implies that almost complex structures on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let *M* be a 2-dimensional oriented manifold. Given a complex structure *I*, let ν be the conformal class of its Hermitian metric. Then ν is determined by *I*, and it determines *I* uniquely.

DEFINITION: A Riemann surface is a complex manifold of dimension 1, or (equivalently) an oriented 2-manifold equipped with a conformal structure. A map from one Riemann surface to another is holomorphic if and only if it preserves the conformal structure.

Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group structure such that the group operations are smooth. Lie group G acts on a manifold M if the group action is given by the smooth map $G \times M \longrightarrow M$.

DEFINITION: Let *G* be a Lie group acting on a manifold *M* transitively. Then *M* is called **a homogeneous space**. For any $x \in M$ the subgroup $St_x(G) = \{g \in G \mid g(x) = x\}$ is called **stabilizer of a point** *x*, or **isotropy subgroup**.

CLAIM: For any homogeneous manifold M with transitive action of G, one has M = G/H, where $H = St_x(G)$ is an isotropy subgroup.

Proof: The natural surjective map $G \longrightarrow M$ putting g to g(x) identifies M with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then $St_x(G)^g = St_y(G)$: all the isotropy groups are conjugate.

Isotropy representation (reminder)

DEFINITION: Let M = G/H be a homogeneous space, $x \in M$ and $St_x(G)$ the corresponding stabilizer group. The **isotropy representation** is the natural action of $St_x(G)$ on T_xM .

DEFINITION: A tensor Φ on a homogeneous manifold M = G/H is called **invariant** if it is mapped to itself by all diffeomorphisms which come from $g \in G$.

REMARK: Let Φ_x be an isotropy invariant tensor on $St_x(G)$. For any $y \in M$ obtained as y = g(x), consider the tensor Φ_y on T_yM obtained as $\Phi_y := g(\Phi)$. The choice of g is not unique, however, for another $g' \in G$ which satisfies g'(x) = y, we have g = g'h where $h \in St_x(G)$. Since Φ is h-invariant, the tensor Φ_y is independent from the choice of g.

We proved

THEOREM: Homogeneous tensors on M = G/H are in bijective correspondence with isotropy invariant tensors on T_xM , for any $x \in M$.

Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous manifold of one of the following types:

positive curvature: S^n (an *n*-dimensional sphere), equipped with an action of the group SO(n+1) of rotations

zero curvature: \mathbb{R}^n (an *n*-dimensional Euclidean space), equipped with an action of isometries

negative curvature: SO(1,n)/SO(n), equipped with the natural SO(1,n)-action. This space is also called **hyperbolic space**, and in dimension 2 **hyperbolic plane** or **Poincaré plane** or **Bolyai-Lobachevsky plane**

Riemannian metric on space forms (reminder)

LEMMA: Let G = SO(n) act on \mathbb{R}^n in a natural way. Then there exists a unique *G*-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g, g' be two *G*-invariant symmetric 2-forms. Since S^{n-1} is an orbit of *G*, we have g(x,x) = g(y,y) for any $x, y \in S^{n-1}$. Multiplying g' by a constant, we may assume that g(x,x) = g'(x,x) for any $x \in S^{n-1}$. Then $g(\lambda x, \lambda x) = g'(\lambda x, \lambda x)$ for any $x \in S^{n-1}$, $\lambda \in \mathbb{R}$; however, all vectors can be written as λx .

COROLLARY: Let M = G/H be a simply connected space form. Then M admits a unique, up to a constant multiplier, G-invariant Riemannian form.

Proof: The isotropy group is SO(n-1) in all three cases, and the previous lemma can be applied.

REMARK: From now on, all space forms are assumed to be homogeneous Riemannian manifolds.

Poincaré-Koebe uniformization theorem (reminder)

DEFINITION: A **Riemannian manifold of constant curvature** is a Riemannian manifold which is locally isometric to a space form.

THEOREM: (Poincaré-Koebe uniformization theorem) Let *M* be a Riemann surface. Then *M* admits a unique complete metric of constant curvature in the same conformal class.

COROLLARY: Any Riemann surface is a quotient of a space form X by a discrete group of isometries $\Gamma \subset Iso(X)$.

COROLLARY: Any simply connected Riemann surface is conformally equivalent to a space form.

REMARK: We shall prove some cases of the uniformization theorem in later lectures.

Möbius transforms (reminder)

DEFINITION: Möbius transform is a conformal (that is, holomorphic) diffeomorphism of $\mathbb{C}P^1$.

REMARK: The group $PGL(2, \mathbb{C})$ acts on $\mathbb{C}P^1$ holomorphially.

THEOREM: The natural map from $PGL(2,\mathbb{C})$ to the group $Aut(\mathbb{C}P^1)$ of Möbius transforms is an isomorphism.

DEFINITION: A circle in S^2 is an orbit of a 1-parametric isometric rotation subgroup $U \subset PGL(2, \mathbb{C})$.

PROPOSITION: The action of $PGL(2, \mathbb{C})$ on $\mathbb{C}P^1$ maps circles to circles.

Proof: Consider a pseudo-Hermitian form h on $V = \mathbb{C}^2$ of signature (1,1). Let h_+ be a positive definite Hermitian form on V. There exists a basis $x, y \in V$ such that $h_+ = \sqrt{-1} x \otimes \overline{x} + \sqrt{-1} y \otimes \overline{y}$ (that is, x, y is orthonormal with respect to h_+) and $h = -\sqrt{-1} \alpha x \otimes \overline{x} + \sqrt{-1} \beta y \otimes \overline{y}$, with $\alpha > 0$, $\beta < 0$ real numbers. Then $\{z \mid h(z, z) = 0\}$ is invariant under the rotation $x, y \longrightarrow x, e^{\sqrt{-1} \theta} y$, hence **it is a circle.**

Conformal automorphisms of \mathbb{C} (reminder)

Lemma 1: Let φ be a Möbius transform fixing $\infty \in \mathbb{C}P^1$. Then $\varphi(z) = az + b$ for some $a, b \in \mathbb{C}$ and all $z = z : 1 \in \mathbb{C}P^1$.

THEOREM: (Riemann removable singularity theorem) Let $f : \mathbb{C} \to \mathbb{C}$ be a continuous function which is holomorphic outside of a finite set. Then f is holomorphic.

Proof: Use the Cauchy formula.

THEOREM: All conformal automorphisms of \mathbb{C} can be expressed by $z \rightarrow az + b$, where a, b are complex numbers, $a \neq 0$.

Proof: Let φ be a conformal automorphism of \mathbb{C} . The Riemann removable singularity theorem implies that φ can be extended to a holomorphic automorphism of $\mathbb{C}P^1$. Indeed, $\mathbb{C}P^1$ is obtained as a 1-point compactification of \mathbb{C} , and any continuous map from \mathbb{C} to \mathbb{C} is extended to a continuous map on $\mathbb{C}P^1$. Now, Lemma 1 implies that $\varphi(z) = az + b$.

Schwartz lemma (reminder)

CLAIM: (maximum principle) Let f be a holomorphic function defined on an open set U. Then f cannot have strict maxima in U. If f has non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.

LEMMA: (Schwartz lemma) Let $f : \Delta \to \Delta$ be a map from disk to itself fixing 0. Then $|f'(0)| \leq 1$, and equality can be realized only if $f(z) = \alpha z$ for some $\alpha \in \mathbb{C}$, $|\alpha| = 1$.

Proof: Consider the function $\varphi := \frac{f(z)}{z}$. Since f(0) = 0, it is holomorphic, and since $f(\Delta) \subset \Delta$, on the boundary $\partial \Delta$ we have $|\varphi||_{\partial \Delta} \leq 1$. Now, the **maximum principle implies that** $|f'(0)| = |\varphi(0)| \leq 1$, and equality is realized only if $\varphi = const$.

Conformal automorphisms of the disk (reminder)

CLAIM: Let $\Delta \subset \mathbb{C}$ be the unit disk. Then the group $Aut(\Delta)$ of its holomorphic automorphisms acts on Δ transitively.

Proof: Let $V_a(z) = \frac{z-a}{1-\overline{a}z}$ for some $a \in \Delta$. Then $V_a(0) = -a$. To prove transitivity, it remains to show that $V_a(\Delta) = \Delta$, which is implied from

$$|V_a(z)| = |V_a(z)||z| = \left|\frac{z\overline{z} - a\overline{z}}{1 - \overline{a}z}\right| = \left|\frac{1 - a\overline{z}}{1 - \overline{a}z}\right| = 1.$$

REMARK: The group $PU(1,1) \subset PGL(2,\mathbb{C})$ of unitary matrices preserving a pseudo-Hermitian form h of signature (1,1) acts on a disk $\{l \in \mathbb{C}P^1 \mid h(l,l) > 0\}$ by holomorphic automorphisms.

COROLLARY: Let $\Delta \subset \mathbb{C}$ be the unit disk, Aut(Δ) the group of its conformal automorphisms, and Ψ : $PU(1,1) \rightarrow Aut(\Delta)$ the map constructed above. Then Ψ is an isomorphism.

COROLLARY: Let *h* be a homogeneous metric on $\Delta = PU(1,1)/S^1$. Then (Δ, h) is conformally equivalent to $(\Delta, \text{flat metric})$.

Upper half-plane (reminder)

REMARK: The map $z \rightarrow -\sqrt{-1} (z-1)^{-1}$ induces a diffeomorphism from the unit disc in \mathbb{C} to the upper half-plane \mathbb{H} .

PROPOSITION: The group $\operatorname{Aut}(\Delta)$ acts on the upper half-plane \mathbb{H} as $z \xrightarrow{A} \frac{az+b}{cz+d}$, where $a, b, c, d \in \mathbb{R}$, and $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} > 0$.

REMARK: The group of such A is naturally identified with $PSL(2,\mathbb{R}) \subset PSL(2,\mathbb{C})$.

REMARK: We have shown that $\mathbb{H} = SO(1,2)/S^1$, hence \mathbb{H} is conformally equivalent to the hyperbolic space.

Upper half-plane as a Riemannian manifold (reminder)

DEFINITION: Poincaré half-plane is the upper half-plane equipped with a homogeneous metric of constant negative curvature constructed above.

THEOREM: Let (x, y) be the usual coordinates on the upper half-plane \mathbb{H} . **Then the Riemannian structure** s on \mathbb{H} is written as $s = const \frac{dx^2 + dy^2}{y^2}$.

Proof: Since the complex structure on \mathbb{H} is the standard one and all Hermitian structures are proportional, we obtain that $s = \mu(dx^2 + dy^2)$, where $\mu \in C^{\infty}(\mathbb{H})$. It remains to find μ , using the fact that s is $PSL(2,\mathbb{R})$ -invariant.

For each $a \in \mathbb{R}$, the parallel transport $x \longrightarrow x + a$ fixes s, hence μ is a function of y. For any $\lambda \in \mathbb{R}^{>0}$, the map $H_{\lambda}(x) = \lambda x$ also fixes s; since $\mathbb{H}_{\lambda}(dx^2 + dy^2) = \lambda^2 dx^2 + dy^2$, we have $\mu(\lambda x) = \lambda^{-2}\mu(x)$.

Geodesics on Riemannian manifold (reminder)

THEOREM: Geodesics on a Poincaré half-plane are vertical straight lines and their images under the action of $SL(2,\mathbb{R})$.

CLAIM: Let S be a circle or a straight line on a complex plane $\mathbb{C} = \mathbb{R}^2$, and S_1 closure of its image in $\mathbb{C}P^1$ inder the natural map $z \to 1 : z$. Then S_1 is a circle, and any circle in $\mathbb{C}P^1$ is obtained this way.

Proof: The circle $S_r(p)$ of radius r centered in $p \in \mathbb{C}$ is given by equation |p-z| = r, in homogeneous coordinates it is $|px-z|^2 = r|x|^2$. This is the zero set of the pseudo-Hermitian form $h(x, z) = |px-z|^2 - |x|^2$, hence it is a circle.

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight lines and half-circles orthogonal to the line im z = 0 in the intersection points.

Proof: We have shown that geodesics in the Poincaré half-plane are Möbius transforms of straight lines orthogonal to im z = 0. However, any Möbius transform preserves angles and maps circles or straight lines to circles or straight lines.

Poincaré metric on disk (reminder)

DEFINITION: Poincaré metric on a unit disk $\Delta \subset \mathbb{C}$ is an Aut(Δ)-invariant metric (it is unique up to a constant multiplier).

DEFINITION: Let $f : M \longrightarrow M_1$ be a map of metric spaces. Then f is called *C*-Lipschitz if $d(x,y) \ge Cd(f(x), f(y))$. A map is called Lipschitz if it is *C*-Lipschitz for some C > 0.

THEOREM: (Schwartz-Pick lemma)

Any holomorphic map $\varphi : \Delta \longrightarrow \Delta$ from a unit disk to itself is 1-Lipschitz with respect to Poicaré metric.

Proof. Step 1: We need to prove that for each $x \in \Delta$ the norm of the differential satisfies $|D\varphi_x| \leq 1$. Since the automorphism group acts on Δ transitively, it suffices to prove that $|D\varphi_x| \leq 1$ when x = 0 and $\varphi(x) = 0$.

Step 2: This is Schwartz lemma. ■

Kobayashi pseudometric (reminder)

DEFINITION: Pseudometric on M is a function $d : M \times M \longrightarrow \mathbb{R}^{\geq 0}$ which is symmetric: d(x,y) = d(y,x) and satisfies the triangle inequality $d(x,y) + d(y,z) \geq d(x,z)$.

REMARK: Let \mathfrak{D} be a set of pseudometrics. Then $d_{\max}(x, y) := \sup_{d \in \mathfrak{D}} d(x, y)$ is also a pseudometric.

DEFINITION: The Kobayashi pseudometric on a complex manifold M is d_{max} for the set \mathfrak{D} of all pseudometrics such that any holomorphic map from the Poincaré disk to M is distance-decreasing.

EXERCISE: Prove that the distance between points x, y in Kobayashi pseudometric is infimum of the Poincaré distance over all sets of Poincaré disks connecting x to y.

EXERCISE: Prove that the Kobayashi pseudometric on \mathbb{C} vanishes.

CLAIM: Any holomorphic map $X \xrightarrow{\varphi} Y$ is 1-Lipschitz with respect to the Kobayashi pseudometric.

Proof: If $x \in X$ is connected to x' by a sequence of Poincare disks $\Delta_1, ..., \Delta_n$, then $\varphi(x)$ is connected to $\varphi(x')$ by $\varphi(\Delta_1), ..., \varphi(\Delta_n)$.

Kobayashi hyperbolic manifolds (reminder)

COROLLARY: Let $B \subset \mathbb{C}^n$ be a unit ball, and $x, y \in B$ points with coordinates $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$. Since x_i, y_i belongs to Δ , it makes sense to compute the Poincare distance $d_P(x_i, y_i)$. Then $d_K(x, y) \ge \max_i d_P(x_i, y_i)$.

Proof: Each of projection maps Π_i : $B \longrightarrow \Delta$ is 1-Lipshitz.

DEFINITION: A variety is called **Kobayashi hyperbolic** if the Kobayashi pseudometric d_K is non-degenerate.

DEFINITION: A domain in \mathbb{C}^n is an open subset. A bounded domain is an open subset contained in a ball.

COROLLARY: Any bounded domain Ω in \mathbb{C}^n is Kobayashi hyperbolic.

Proof: Without restricting generality, we may assume that $\Omega \subset B$ where B is an open ball. Then the Kobayashi distance in Ω is \geq that in B. However, the Kobayashi distance in B is bounded by the metric $d(x, y) := \max_i d_P(x_i, y_i)$ as follows from above.

Uniform convergence for Lipschitz maps (reminder)

DEFINITION: A sequence of maps $f_i : M \longrightarrow N$ between metric spaces **uni**formly converges (or converges uniformly on compacts) to $f : M \longrightarrow N$ if for any compact $K \subset M$, we have $\lim_{i \to \infty} \sup_{x \in K} d(f_i(x), f(x)) = 0$.

Claim 1: Suppose that a sequence $f_i : M \longrightarrow N$ of 1-Lipschitz maps converges to f pointwise in a countable dense subset $M' \subset M$. Then f_i converges to f uniformly on compacts.

Proof: Let $K \subset M$ be a compact set, and $N_{\varepsilon} \subset M'$ a finite subset such that K is a union of ε -balls centered in N_{ε} (such N_{ε} is called **an** ε -**net**). Then there exists N such that $\sup_{x \in N_{\varepsilon}} d(f_{N+i}(x), f(x)) < \varepsilon$ for all $i \ge 0$. Since f_i are 1-Lipschitz, this implies that

$$\sup_{y \in K} d(f_{N+i}(y), f(y) \leq \\ \leq \sup_{x \in N_{\varepsilon}} d(f_{N+i}(x), f(x)) + \inf_{x \in N_{\varepsilon}} (d(f_{N+i}(x), y) + d(f(x), y)) \leq 3\varepsilon.$$

EXERCISE: Prove that the limit f is also 1-Lipschitz.

REMARK: This proof works when M is a pseudo-metric space, as long as N is a metric space.

Arzela-Ascoli theorem for Lipschitz maps (reminder)

DEFINITION: Let M, N be metric spaces. A subset $B \subset M$ is **bounded** if it is contained in a ball. A family $\{f_{\alpha}\}$ of functions $f_{\alpha} : M \longrightarrow N$ is called **uniformly bounded on compacts** if for any compact subset $K \subset M$, there is a bounded subset $C_K \subset N$ such that $f_{\alpha}(K) \subset C_K$ for any element f_{α} of the family.

THEOREM: (Arzela-Ascoli for Lipschitz maps)

Let $\mathcal{F} := \{f_{\alpha}\}$ be an infinite uniformly bounded set of 1-Lipschitz maps f_{α} : $M \longrightarrow \mathbb{C}$, where M is a pseudo-metric space. Assume that M has countable base of open sets and can be obtained as a countable union of compact subsets. Then there is a sequence $\{f_i\} \subset \mathcal{F}$ which converges to f: $M \longrightarrow \mathbb{C}$ uniformly.

REMARK: The limit f is clearly also 1-Lipschitz.

M. Verbitsky

Normal families of holomorphic functions (reminder)

DEFINITION: Let M be a complex manifold. A family $\mathcal{F} := \{f_{\alpha}\}$ of holomorphic functions $f_{\alpha} : M \longrightarrow \mathbb{C}$ is called **normal family** if \mathcal{F} is uniformly bounded on compact subsets.

THEOREM: (Montel's theorem)

Let M be a complex manifold with countable base, and \mathcal{F} a normal, infinite family of holomorphic functions. Then there is a sequence $\{f_i\} \subset \mathcal{F}$ which converges to $f : M \longrightarrow \mathbb{C}$ uniformly, and f is holomorphic.

Proof. Step 1: As in the first step of Arzela-Ascoli, it suffices to prove Montel's theorem on a subset of M where \mathcal{F} is bounded. Therefore, we may assume that all f_{α} map M into a disk Δ .

Step 2: All f_{α} are 1-Lipschitz with respect to Kobayashi metric. Therefore, **Arzela-Ascoli theorem can be applied, giving a uniform limit** $f = \lim f_i$.

Step 3: A uniform limit of holomorphic functions is holomorphic by Cauchy formula. ■

REMARK: The sequence $f = \lim f_i$ converges uniformly with all derivatives, again by Cauchy formula.

Riemann mapping theorem

THEOREM: Let $\Omega \subset \Delta$ be a simply connected domain. Then Ω is biholomorphic to Δ .

Idea of a proof: We consider the Kobayashi metric on Ω and Δ , and let \mathcal{F} be the set of all injective holomorphic maps $\Omega \longrightarrow \Delta$. Consider $x \in \Omega$, and let f be a map with $|df_x|$ maximal in the sense of Kobayashi metric. Such f exists by Montel's theorem. We prove that f is an isometry, and hence biholomorphic.

PROPOSITION: Let \mathcal{H} be the set of holomorphic maps $f : \Omega_1 \longrightarrow \Omega_2$ between Riemann surfaces, equipped with uniform topology, and \mathcal{H}_0 its subset consisting of injective maps. Then \mathcal{H}_0 is closed in \mathcal{H} .

Proof: Let f_i be a sequence of injective maps converging to $f: \Omega_1 \to \Omega_2$ which is not injective. Then f(a) = f(b) for some $a \neq b$ in Ω_1 . Choose open disks A and B containing a and b. Then the Proposition is implied by the following lemma.

LEMMA: Let \mathcal{R} be the set of all pairs of distinct holomorphic functions $f, g: \Delta \longrightarrow \mathbb{C}$ continuously extended to the boundary such that f(x) = g(x) for some $x \in \Delta$. Then \mathcal{R} is open in uniform topology.

The set of non-injective maps is open

LEMMA: Let \mathcal{R} be the set of all pairs of distinct holomorphic functions $f,g: \Delta \longrightarrow \mathbb{C}$ continuously extended to the boundary such that f(x) = g(x) for some $x \in \Delta$. Then \mathcal{R} is open in uniform topology.

Proof. Step 1: The set of all points $z \in \Delta$ where f = g is discrete (prove it). This implies that we can replace Δ by a smaller disc containing x such that $f \neq g$ everywhere on its boundary.

Step 2: Consider the function $\alpha \frac{(f-g)'}{f-g}$ on Δ . This function has a simple pole in all the points where f = g. Therefore, $n_{f,g} := \frac{1}{\pi\sqrt{-1}} \int_{\partial\Delta} \alpha dz$ is equal to the number of points $x \in \Delta$ such that f(x) = g(x).

Step 3: Since the integral is continuous in unform topology, **this number** is locally constant on the space of pairs such $f, g : \Delta \longrightarrow \mathbb{C}$. Therefore, the set \mathcal{R} of all f, g with $n_{f,g} \neq 0$ is open.

Coverings

DEFINITION: Constant sheaf with coefficients in a set S is a sheaf \mathcal{F} such that for any $U \subset M$, the space of sections of \mathcal{F} is S, independent on U. Locally constant sheaf is a sheaf \mathcal{F} such that each point $x \in M$ has a neighbourhood $U \subset M$ such that the restriction of \mathcal{F} to U is constant.

DEFINITION: A continuous map π : $\tilde{M} \longrightarrow M$ of topological spaces is a **covering** if π is locally a diffeomorphism, and the space of sections of π is a locally constant sheaf.

EXAMPLE: The map $x \to x^2$ is a covering from $\mathbb{C}^* := \mathbb{C} \setminus 0$ to itself (prove it).

Homotopy lifting principle

DEFINITION: A topological space X is **locally path connected** if for each $x \in X$ and each neighbourhood $U \ni x$, there exists a smaller neighbourhood $W \ni x$ which is path connected.

THEOREM: (homotopy lifting principle)

Let X be a simply connected, locally path connected topological space, and $\tilde{M} \longrightarrow M$ a covering map. Then for each continuous map $X \longrightarrow M$, there exists a lifting $X \longrightarrow \tilde{M}$ making the following diagram commutative.

COROLLARY: Let $\varphi : \Omega \longrightarrow \mathbb{C}^*$ be a holomorphic map from a simply connected domain Ω . Then there exists a holomorphic map $\varphi_1 : \Omega \longrightarrow \mathbb{C}^*$ such that for all $z \in \Delta$, $\varphi(z) = \varphi_1(z)^2$.

Proof: We apply homotopy lifting principle to $X = \Omega$, $M = \tilde{M} = \mathbb{C}^*$, and $\tilde{M} \longrightarrow M$ mapping x to x^2 .

REMARK: We denote $\varphi_1(z)$ by $\sqrt{\varphi(z)}$, for obvious reasons.

Kobayashi metric and the map $x \longrightarrow x^2$

CLAIM: Consider a non-bijective holomorphic map $\varphi : \Delta \longrightarrow \Delta$ from Poincare disk to itself. Then $|d\varphi| < 1$ at each point, where $d\varphi$ is a norm of an operator $d\varphi : T_x \Delta \longrightarrow T_{\varphi(x)} \Delta$ taken with respect to the Poincare metric.

Proof: Let $\varphi : \Delta \longrightarrow \Delta$ be a holomorphic map which satisfies $|d\varphi| = 1$ at $x \in \Delta$. Replacing φ by $\gamma_1 \circ \varphi \circ \gamma_2$ if necessary, where γ_i are biholomorphic isometries of Δ , we may assume that x = 0 and $\varphi(x) = 0$. By Schwartz lemma for such φ , $|d\varphi(0)| = 1$ implies that φ is a linear biholomorphic map.

Corollary 1: Let $\varphi : \Delta \longrightarrow \Delta \setminus 0$ be a holomorphic function, and $\sqrt{\varphi}$ a holomorphic function defined above. Let $|d\varphi|(x)$ denote the norm of the operator $d\varphi$ at $x \in \Delta$ computed with respect to the Poincare metric on Δ . **Then** $|d\varphi|(x) < |d\sqrt{\varphi}|(x)$ for any $x \in \Delta$.

Proof: Let $\psi(x) = x^2$. By the claim above, $|d\psi|(x) < 1$ for all $x \in \Delta$. Using the chain rule, we obtain that $d\varphi = d\psi \circ d\sqrt{\varphi}$. which gives $|d\varphi|(x) = |d\psi|(\sqrt{\varphi}(x))|d\sqrt{\varphi}|(x)$, hence

$$|d\sqrt{\varphi}|(x) = \frac{|d\varphi|(x)|}{|d\psi|(\sqrt{\varphi}(x))} > |d\varphi|(x).$$

Riemann mapping theorem

THEOREM: Let $\Omega \subset \Delta$ be a simply connected domain. Then Ω is biholomorphic to Δ .

Proof. Step 1: Consider the Kobayashi metric on Ω and Δ , and let \mathcal{F} be the set of all injective holomorphic maps $\Omega \longrightarrow \Delta$. Consider $x \in \Omega$, and let f be a map with |df|(x) maximal in the sense of Kobayashi metric. Such f exists by Montel's theorem. Since f lies in the closure of \mathcal{F} , and the set of injective maps is closed, f is injective.

Step 2: It remains to show that f is surjective. Suppose it is not surjective: $z \notin f(\Omega)$. Taking a composition of f and an isometry of the Poincare disk does not affect |df|(x), hence we may assume that z = 0. Then the function \sqrt{f} is a well defined holomorphic map from Ω to Δ . By Corollary 1, $|d\sqrt{f}|(x) > |df|(x)$, which is impossible, because it |df|(x) is maximal.

Normal families in complete generality

DEFINITION: A set of holomorphic maps f_{α} : $X \longrightarrow Y$ is called a normal family if any sequence $\{f_i\}$ in $\{f_{\alpha}\}$ has a subsequence converging unformly on compacts.

THEOREM: Let $f_{\alpha} : X \longrightarrow Y$ be a family of holomorphic maps such that for any point $x \in X$ there exists its neighbourhood with compact closure $K \subset X$ and a Kobayashi hyperbolic open subset $V_K \subset Y$ such that all f_{α} map K to V_k . Then f_{α} is a normal family.

EXERCISE: Prove it.

Fatou and Julia sets

DEFINITION: Let $f : \mathbb{C}P^1 \to \mathbb{C}P^1$ be a rational map, and $\{f^i\} = \{f, f \circ f, f \circ f \circ f, ...\}$ the set of all iterations of f. Fatou set of f is the set of all points $x \in \mathbb{C}P^1$ such that for some neighbourhood $U \ni x$, the restriction $\{f^i|_U\}$ is a normal family, and Julia set is a complement to Fatou set.

EXAMPLE: For the map $f(x) = x^2$, Julia set is the unit circle, and the Fatou set is its complement (prove it).

DEFINITION: Attractor point z is a fixed point of f such that |df|(z) < 1; the attractor basin for z is the set of all $x \in \mathbb{C}P^1$ such that $\lim_i f^i(x) = z$.

CLAIM: For any fixed point z, its attractor basin belongs to the Fatou set.

Proof: Indeed, since $\lim_i f^i(x) = z$ for any point in attractor basin U, $\{f^i\}$ is a normal family on U (pointwise convergence is equivalent to uniform convergence for bounded holomorphic functions by Arzela-Ascoli theorem).

DEFINITION: Newton iteration for solving the polynomial equation g(z) = 0: a solution is obtained as a limit $\lim_i f^i(z)$, where $f(z) = z - \frac{g(z)}{g'(z)}$. Indeed, solutions of g(z) = 0 are attracting fixed points of f (check this).

Riemann surfaces, lecture 8

M. Verbitsky

Fatou and Julia sets for $f(z) = \frac{1+2z^3}{3z^2}$

We apply the Newton iteration method to $g(z) = z^3 - 1$.

Julia set (in white) for the map $f(z) = \frac{1+2z^3}{3z^2} = z - \frac{g(z)}{g'(z)}$. Coloring of Fatou set according to attractor (the roots of $g(z) = z^3 - 1$).

Riemann surfaces, lecture 8

Julia set for $f(z) = z^2 - \sqrt{-1}$

Julia set for $f(z) = z^2 - \sqrt{-1}$ is called **dendrite**.

Riemann surfaces, lecture 8

Julia set for $f(z) = z^2 + 0.12 + 0.6\sqrt{-1}$

San Marco fractal

San Marco fractal is the Julia set for $f(z) = z^2 - 0.75$

Mandelbrot set

DEFINITION: Mandelbrot set is the set of all *c* such that 0 belongs to the Fatou set of $f(z) = z^2 + c$.

Properties of Fatou and Julia sets

REMARK: Let $f : \mathbb{C}P^1 \longrightarrow \mathbb{C}P^1$ be a holomorphic map. Then the Fatou F(f) and Julia set J(f) of f are f-invariant.

LEMMA: (Iteration lemma) For each k, $J(f) = J(f^k)$, where f^k is k-th iteration of f.

Proof. Step 1: Clearly, $F(f^k) \subset F(f)$, because $\overline{\{f^k, f^{2k}, f^{3k}, ...\}}$ is compact when $\overline{\{f, f^2, f^3, ...\}}$ is compact.

Proof: Conversely, suppose that $X = F(f^k)$; then $\overline{\{f^k, f^{2k}, f^{3k}, ...\}}$ is compact, but then $\overline{\{f, f^{k+1}, f^{2k+1}, f^{3k+1}, ...\}}$ is also compact as a continuous image image of a compact (the composition is continuous in uniform topology), same for $\overline{\{f^2, f^{k+2}, f^{2k+2}, f^{3k+2}, ...\}}$, and so on. Then $\overline{\{f, f^2, f^3, ...\}}$ is obtained as a union of k compact sets. **Therefore,** $F(f) \subset F(f^k)$.

Properties of Fatou and Julia sets (2)

THEOREM: Julia set of polynomial map $f : \mathbb{C}P^1 \longrightarrow \mathbb{C}P^1$ is non-empty, unless deg $f \leq 1$.

Proof: Let $\Delta \subset \mathbb{C}P^1$, and n(g) the number of critical points of a holomorphi function g in Δ . Then $n(g) = \frac{1}{\pi\sqrt{-1}} \int_{\partial\Delta} \frac{g'}{g} dz$, and this number is locally constant in uniform topology if g has no critical points on the boundary. Since the number of critical points of f^i is $i \deg f - 1$, it converges to infinity, hence f^i cannot converge to a holomorphic function everywhere.