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Riemannian manifolds (reminder)

DEFINITION: Let h € Sym2T*M be a symmetric 2-form on a manifold
which satisfies h(x,z) > 0 for any non-zero tangent vector . Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any z.y € M, and any path v : [a,b] — M connecting
x and y, consider the length of ~ defined as L(v) = fﬂ%\dt, where |‘é—¥| =
h(%X,9)1/2 Define the geodesic distance as d(z,y) = infy L(y), where
infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M =R", h =), da:i2. Prove that the geodesic distance
coincides with d(z,y) = |z — y|.

EXERCISE: Using partition of unity, prove that any manifold admits a
Riemannian structure.
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Conformal structures and almost complex structures (reminder)

REMARK: The following theorem implies that almost complex structures
on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let M be a 2-dimensional oriented manifold. Given a complex
structure I, let v be the conformal class of its Hermitian metric. Then v is
determined by I/, and it determines I uniquely.

DEFINITION: A Riemann surface is a complex manifold of dimension
1, or (equivalently) an oriented 2-manifold equipped with a conformal
structure. A map from one Riemann surface to another is holomorphic
iIf and only if it preserves the conformal structure.



Riemann surfaces, lecture 8 M. Verbitsky

Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group
structure such that the group operations are smooth. Lie group G acts on
a manifold M if the group action is given by the smooth map G x M — M.

DEFINITION: Let G be a Lie group acting on a manifold M transitively.
Then M is called a homogeneous space. For any x € M the subgroup
St.(G) ={g9g€ G | g(x) =} is called stabilizer of a point z, or isotropy
subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one
has M = G/H, where H = St;(G) is an isotropy subgroup.

Proof: The natural surjective map G — M putting g to ¢g(x) identifies M
with the space of conjugacy classes G/H. =

REMARK: Let g(x) =y. Then St;(G)J9 = Sty(G): all the isotropy groups
are conjugate.
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Isotropy representation (reminder)

DEFINITION: Let M = G/H be a homogeneous space, x € M and St;(G)
the corresponding stabilizer group. The isotropy representation is the nat-
ural action of St;(G) on T, M.

DEFINITION: A tensor & on a homogeneous manifold M = G/H is called
iInvariant if it is mapped to itself by all diffeomorphisms which come from

geaq.

REMARK: Let &, be an isotropy invariant tensor on St;(G). Forany ye M
obtained as y = g(z), consider the tensor &, on T, M obtained as &, := g(P).
The choice of g is not unique, however, for another ¢ € G which satisfies
¢ (z) = vy, we have g = g’h where h € St;(G). Since @& is h-invariant, the
tensor ¢, is independent from the choice of g.

We proved
THEOREM: Homogeneous tensors on M = G/H are in bijective corre-

spondence with isotropy invariant tensors on 7, M, for any z € M.
5



Riemann surfaces, lecture 8 M. Verbitsky

Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous manifold
of one of the following types:

positive curvature: S™ (an n-dimensional sphere), equipped with an
action of the group SO(n 4+ 1) of rotations

zero curvature: R" (an n-dimensional Euclidean space), equipped with
an action of isometries

negative curvature: SO(1,n)/SO(n), equipped with the natural SO(1,n)-
action. This space is also called hyperbolic space, and in dimension 2 hy-
perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane
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Riemannian metric on space forms (reminder)

LEMMA: Let G = SO(n) act on R"™ in a natural way. Then there exists a
unique G-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g,¢ be two G-invariant symmetric 2-forms. Since S 1 is an
orbit of G, we have g(z,z) = ¢(y,y) for any z,y € S*~1. Multiplying ¢ by
a constant, we may assume that g(z,z) = ¢'(z,z) for any z € S"~1. Then
gz, \x) = ¢z, \z) for any = € S 1, X\ € R; however, all vectors can be
written as \z. m

COROLLARY: Let M = G/H be a simply connected space form. Then M
admits a unique, up to a constant multiplier, G-invariant Riemannian
form.

Proof: The isotropy group is SO(n — 1) in all three cases, and the previous
lemma can be applied. =

REMARK: From now on, all space forms are assumed to be homoge-
neous Riemannian manifolds.
7
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Poincaré-Koebe uniformization theorem (reminder)

DEFINITION: A Riemannian manifold of constant curvature is a Rie-
mannian manifold which is locally isometric to a space form.

THEOREM: (Poincaré-Koebe uniformization theorem) Let M be a Rie-
mann surface. Then M admits a unique complete metric of constant
curvature in the same conformal class.

COROLLARY: Any Riemann surface is a quotient of a space form X
by a discrete group of isometries I C Iso(X).

COROLLARY: Any simply connected Riemann surface is conformally
equivalent to a space form.

REMARK: We shall prove some cases of the uniformization theorem in later
lectures.
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MoObius transforms (reminder)

DEFINITION: Mobius transform is a conformal (that is, holomorphic)
diffeomorphism of CP1.

REMARK: The group PGL(2,C) acts on CP! holomorphially.

THEOREM: The natural map from PGL(2,C) to the group Aut(CP1)
of Mobius transforms is an isomorphism.

DEFINITION: A circle in S?2 is an orbit of a 1-parametric isometric rotation
subgroup U C PGL(2,C).

PROPOSITION: The action of PGL(2,C) on CP1 maps circles to cir-
cles.

Proof: Consider a pseudo-Hermitian form h on V = C?2 of signature (1,1). Let
h4 be a positive definite Hermitian form on V. There exists a basis z,y € V
such that hy =+v/—-12®z4++v/—1y®y (that is, z,y is orthonormal with respect
tohy)and h=—/-laz®z4++v/—1PBy®7y, with a >0, 8 < 0 real numbers.
Then {z | h(z,z) = 0} is invariant under the rotation z,y —s z,e¥ 1%, hence

It IS a circle. =
o
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Conformal automorphisms of C (reminder)

Lemma 1: Let ¢ be a Mdbius transform fixing co € CPL. Then o(2) = az+b
for some a,beC and all z=2z:1 e CPL.

THEOREM: (Riemann removable singularity theorem) Let f: C—C
be a continuous function which is holomorphic outside of a finite set. Then
f 1s holomorphic.

Proof: Use the Cauchy formula. m

THEOREM: All conformal automorphisms of C can be expressed by
z —» az + b, where a,b are complex numbers, a #= 0.

Proof: Let ¢ be a conformal automorphism of C. The Riemann removable
singularity theorem implies that ¢ can be extended to a holomorphic au-
tomorphism of CPL. Indeed, CP! is obtained as a 1-point compactification
of C, and any continuous map from C to C is extended to a continuous map
on CPl. Now, Lemma 1 implies that ¢(2) =az+b. =
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Schwartz lemma (reminder)

CLAIM: (maximum principle) Let f be a holomorphic function defined
on an open set U. Then f cannot have strict maxima in U. If f has
non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.
LEMMA: (Schwartz lemma) Let f: A — A be a map from disk to itself

fixing 0. Then |f/(0)| < 1, and equality can be realized only if f(z) = az
for some a € C, |of = 1.

Proof: Consider the function ¢ := f(zz). Since f(0) = 0O, it is holomorphic,
and since f(A) C A, on the boundary 0A we have |p|llgan < 1. Now, the
maximum principle implies that |f/(0)| = |¢(0)| < 1, and equality is realized
only if ¢ = const. =
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Conformal automorphisms of the disk (reminder)

CLAIM: Let A C C be the unit disk. Then the group Aut(A) of its
holomorphic automorphisms acts on A transitively.

Proof: Let Vi(z) = =2 for some a € A. Then V4(0) = —a. To prove

1-az
transitivity, it remains to show that V,(A) = A, which is implied from

2Z —az 1 —az

= 1.

Va(2)| = [Va(2)]|2] =

1 —az 1 —az

REMARK: The group PU(1,1) Cc PGL(2,C) of unitary matrices preserving a
pseudo-Hermitian form h of signature (1,1) acts on a disk {{ € CP! | h(1,1) >
0} by holomorphic automorphisms.

COROLLARY: Let A C C be the unit disk, Aut(A) the group of its con-
formal automorphisms, and v : PU(1,1) — Aut(A) the map constructed
above. Then W is an isomorphism.

COROLLARY: Let h be a homogeneous metric on A = PU(1,1)/St. Then
(A, h) is conformally equivalent to (A, flat metric).

12
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Upper half-plane (reminder)

REMARK: The map z— —+/—1 (z — 1)~ 1 induces a diffeomorphism from
the unit disc in C to the upper half-plane H.

PROPOSITION: The group Aut(A) acts on the upper half-plane H as

. A a2+’, where a,b,c,d € R, and det <CCL Z) > 0.

REMARK: The group of such A is naturally identified with PSL(2,R) C
PSL(2,C).

REMARK: We have shown that H = SO(1,2)/S!, hence H is conformally
equivalent to the hyperbolic space.

13



Riemann surfaces, lecture 8 M. Verbitsky

Upper half-plane as a Riemannian manifold (reminder)

DEFINITION: Poincaré half-plane is the upper half-plane equipped with a
homogeneous metric of constant negative curvature constructed above.

THEOREM: Let (x,y) be the usual coordinates on the upper half-plane H.
2 2
Then the Riemannian structure s on H is written as s = const%" L%~

Proof: Since the complex structure on H is the standard one and all Hermitian
structures are proportional, we obtain that s = u(dz2+dy?), where p € C°(H).
It remains to find u, using the fact that s is PSL(2,R)-invariant.

For each a € R, the parallel transport x — x + a fixes s, hence p is a function

of y. For any XA € R>9, the map H,(z) = Az also fixes s; since H, (dz? 4 dy?) =
A2dxz? 4 dy?, we have u(\z) = A 2u(z). =

14
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Geodesics on Riemannian manifold (reminder)

THEOREM: Geodesics on a Poincaré half-plane are vertical straight
lines and their images under the action of SL(2,R).

CLAIM: Let S be a circle or a straight line on a complex plane C = R2, and
S1 closure of its image in CP!l inder the natural map z — 1 : 2. Then Sq1 1S
a circle, and any circle in CP! is obtained this way.

Proof: The circle Sy(p) of radius r centered in p € C is given by equation
lp— z| = r, in homogeneous coordinates it is |pz — z|2 = r|z|2. This is the zero
set of the pseudo-Hermitian form h(z,z) = |px — 2|2 — |z|2, hence it is a circle.
u

COROLLARY: Geodesics on the Poincaré half-plane are vertical straight
lines and half-circles orthogonal to the line imz = 0 in the intersection
points.

Proof: We have shown that geodesics in the Poincaré half-plane are Mobius
transforms of straight lines orthogonal to imz = 0. However, any MOobius
transform preserves angles and maps circles or straight lines to circles or
straight lines. =

15
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Poincaré metric on disk (reminder)

DEFINITION: Poincaré metric on a unit disk A C Cis an Aut(A)-invariant
metric (it is unique up to a constant multiplier).

DEFINITION: Let f: M — M1 be a map of metric spaces. Then f is
called C-Lipschitz if d(z,y) > Cd(f(x), f(y)). A map is called Lipschitz if it
is C-Lipschitz for some C > 0.

THEOREM: (Schwartz-Pick lemma)

Any holomorphic map ¢ : A — A from a unit disk to itself is 1-
Lipschitz with respect to Poicaré metric.

Proof. Step 1: We need to prove that for each x € A the norm of the
differential satisfies |Dyp;| < 1. Since the automorphism group acts on A

transitively, it suffices to prove that |Dy;| <1 when z =0 and p(x) = 0.

Step 2: This is Schwartz lemma. =

16
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Kobayashi pseudometric (reminder)

DEFINITION: Pseudometric on M is a function d: M x M — R0 which
is symmetric: d(x,y) = d(y,xz) and satisfies the triangle inequality d(x,vy) +
d(y, z) = d(z, z).

REMARK: Let © be a set of pseudometrics. Then dmax(z,y) := supgep d(z,y)
IS also a pseudometric.

DEFINITION: The Kobayashi pseudometric on a complex manifold M is
dmax for the set ® of all pseudometrics such that any holomorphic map from
the Poincaré disk to M is distance-decreasing.

EXERCISE: Prove that the distance between points x,y in Kobayashi
pseudometric is infimum of the Poincaré distance over all sets of
Poincaré disks connecting x to y.

EXERCISE: Prove that the Kobayashi pseudometric on C vanishes.

CLAIM: Any holomorphic map X 2y Y is 1-Lipschitz with respect to
the Kobayashi pseudometric.

Proof: If x € X is connected to =’ by a sequence of Poincare disks A1, ..., Ay,
then () is connected to p(z’') by p(A1),...,0(Ar). =

17
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Kobayashi hyperbolic manifolds (reminder)

COROLLARY: Let B C C™ be a unit ball, and x,y € B points with coordi-
nates + = (z1,...,xn),y = (y1,...,yn). Since x;,y; belongs to A, it makes sense
to compute the Poincare distance dp(xz;,y;). Then di(x,y) > max;dp(xz;,y;).

Proof:. Each of projection maps I1; : B— A is 1-Lipshitz. m

DEFINITION: A variety is called Kobayashi hyperbolic if the Kobayashi
pseudometric dy is non-degenerate.

DEFINITION: A domain in C" is an open subset. A bounded domain is
an open subset contained in a ball.

COROLLARY: Any bounded domain €2 in C" is Kobayashi hyperbolic.

Proof: Without restricting generality, we may assume that €2 C B where B is
an open ball. Then the Kobayashi distance in €2 is > that in B. However, the
Kobayashi distance in B is bounded by the metric d(x,y) := max;dp(xz;,y;) as
follows from above. m

18
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Uniform convergence for Lipschitz maps (reminder)

DEFINITION: A sequence of maps f; : M — N between metric spaces uni-
formly converges (or converges uniformly on compacts) to f: M — N
if for any compact K C M, we have lim sup,cx d(fi(x), f(x)) = 0.

71— 00

Claim 1: Suppose that a sequence f; : M — N of 1-Lipschitz maps con-
verges to f pointwise in a countable dense subset M’ C M. Then f; con-
verges to f uniformly on compacts.

Proof: Let K C M be a compact set, and N: C M’ a finite subset such that
K is a union of e-balls centered in N: (such N¢ is called an e-net). Then
there exists N such that sup,cn. d(fn4i(x), f(z)) < e for all + > 0. Since f;
are 1-Lipschitz, this implies that

sup d(fn+i(y), f(y) <

ye
xENg ZUENFJ

|
EXERCISE: Prove that the limit f is also 1-Lipschitz.

REMARK: This proof works when M is a pseudo-metric space, as long
as N IS a metric space.

19
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Arzela-Ascoli theorem for Lipschitz maps (reminder)

DEFINITION: Let M, N be metric spaces. A subset B C M is bounded
if it is contained in a ball. A family {fa} of functions fo, : M — N is called
uniformly bounded on compacts if for any compact subset K C M, there
is @ bounded subset Ci C N such that fo(K) C Ck for any element f, of the
family.

THEOREM: (Arzela-Ascoli for Lipschitz maps)

Let F := {fa} be an infinite uniformly bounded set of 1-Lipschitz maps fu :
M — C, where M is a pseudo-metric space. Assume that M has countable
base of open sets and can be obtained as a countable union of compact
subsets. Then there is a sequence {f;} € F which converges to f :
M — C uniformly.

REMARK: The limit f is clearly also 1-Lipschitz.

20
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Normal families of holomorphic functions (reminder)

DEFINITION: Let M be a complex manifold. A family F := {fa} of holo-
morphic functions fo : M — C is called normal family if F is uniformly
bounded on compact subsets.

THEOREM: (Montel’s theorem)

Let M be a complex manifold with countable base, and F a normal, infinite
family of holomorphic functions. Then there is a sequence {f;} C 7 which
converges to f: M — C uniformly, and f is holomorphic.

Proof. Step 1: As in the first step of Arzela-Ascoli, it suffices to prove
Montel's theorem on a subset of M where F is bounded. Therefore, we may
assume that all f, map M into a disk A.

Step 2: All fo are 1-Lipschitz with respect to Kobayashi metric. Therefore,
Arzela-Ascoli theorem can be applied, giving a uniform limit f =1lim f;.

Step 3: A uniform limit of holomorphic functions is holomorphic by Cauchy
formula. m

REMARK: The sequence f = lim f; converges uniformly with all deriva-
tives, again by Cauchy formula.
21
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Riemann mapping theorem

THEOREM: Let 2 C A be a simply connected domain. Then <2 is biholo-
morphic to A.

Idea of a proof: We consider the Kobayashi metric on €2 and A, and let F
be the set of all injective holomorphic maps €2 — A. Consider z € 2, and
let f be a map with |dfz| maximal in the sense of Kobayashi metric. Such f
exists by Montel’s theorem. We prove that f is an isometry, and hence
biholomorphic.

PROPOSITION: Let H be the set of holomorphic maps f : 21 — €2
between Riemann surfaces, equipped with uniform topology, and Hg its subset
consisting of injective maps. Then Hg is closed in H.

Proof: Let f;, be a sequence of injective maps converging to f : €27 — $2o
which is not injective. Then f(a) = f(b) for some a = b in 21. Choose open
disks A and B containing a and b. Then the Proposition is implied by the
following lemma.

LEMMA: Let R be the set of all pairs of distinct holomorphic functions
f,g: A — C continuously extended to the boundary such that f(x) = g(x)
for some x € A. Then R is open in uniform topology.

22
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The set of non-injective maps iIs open

LEMMA: Let R be the set of all pairs of distinct holomorphic functions
f,g: A — C continuously extended to the boundary such that f(x) = g(x)
for some z € A. Then R is open in uniform topology.

Proof. Step 1: The set of all points z € A where f = g is discrete (prove
it). This implies that we can replace A by a smaller disc containing z
such that f # g everywhere on its boundary.

Step 2: Consider the function a(]}%gg)’ on A. This function has a simple

1

pole in all the points where f = g. Therefore, ny, 1= T

to the number of points z € A such that f(z) = g(x).

Jan adz is equal

Step 3: Since the integral is continuous in unform topology, this number
IS locally constant on the space of pairs such f,g: A — C. Therefore,
the set R of all f,g with ny, 7 0 is open. m

23
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Coverings

DEFINITION: Constant sheaf with coefficients in a set S is a sheaf F
such that for any U C M, the space of sections of F is S, independent on
U. Locally constant sheaf is a sheaf F/ such that each point x € M has a
neighbourhood U C M such that the restriction of F to U is constant.

DEFINITION: A continuous map = : M — M of topological spaces is a
covering if « is locally a diffeomorphism, and the space of sections of 7 is a

locally constant sheaf.

EXAMPLE: The map ¢ — z2 is a covering from C* := C\0 to itself (prove
it).

24
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Homotopy lifting principle

DEFINITION: A topological space X is locally path connected if for each
x € X and each neighbourhood U > z, there exists a smaller neighbourhood
W > x which is path connected.

THEOREM: (homotopy lifting principle)
Let X be a simply connected, locally path connected topological space, and

M — M a covering map. Then for each continuous map X — M, there
exists a lifting X — M making the following diagram commutative.
X M

I

COROLLARY: Let ¢ : Q2 — C* be a holomorphic map from a simply
connected domain £2. Then there exists a holomorphic map ¢ : 22— C~*
such that for all z € A, o(2) = ¢1(2)%.

M

Proof: We apply homotopy lifting principle to X = Q, M = M = C*, and
M —s M mapping = to z2. =

REMARK: We denote p1(z) by /¢(z), for obvious reasons.
25
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Kobayashi metric and the map =« SN

CLAIM: Consider a non-bijective holomorphic map ¢ : A — A from Poincare
disk to itself. Then |dy| < 1 at each point, where dy is a norm of an operator
do : TaxA — T, A taken with respect to the Poincare metric.

Proof: Let ¢ : A — A be a holomorphic map which satisfies |[dp| = 1 at
x € A. Replacing ¢ by ~v1 o p oo if necessary, where ~, are biholomorphic
isometries of A, we may assume that z = 0 and p(x) = 0. By Schwartz
lemma for such ¢, |[dp(0)| = 1 implies that ¢ is a linear biholomorphic map. =

Corollary 1: Let ¢ : A — A\O be a holomorphic function, and /¢ a
holomorphic function defined above. Let |dp|(x) denote the norm of the
operator dy at x € A computed with respect to the Poincare metric on A.
Then |dy|(x) < |d\/p|(x) for any = € A.

Proof: Let ¢(z) = z2. By the claim above, |dy|(z) < 1 for all z € A.
Using the chain rule, we obtain that dy = dy o d,/p. which gives |dy|(x) =

|| (e (2))ldy/@l(x), hence
del ()]
|| (/e (z))

[d/ol(z) = > |do|(z).

26
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Riemann mapping theorem

THEOREM: Let €2 C A be a simply connected domain. Then €2 is biholo-
morphic to A.

Proof. Step 1: Consider the Kobayashi metric on €2 and A, and let F be
the set of all injective holomorphic maps 2 — A. Consider z € 2, and let
f be a map with |df|(x) maximal in the sense of Kobayashi metric. Such f
exists by Montel’s theorem. Since f lies in the closure of F, and the set
of injective maps is closed, f iIs injective.

Step 2: It remains to show that f is surjective. Suppose it is not surjective:
z & f(2). Taking a composition of f and an isometry of the Poincare disk
does not affect |df|(x), hence we may assume that z = 0. Then the function
Vv f is a well defined holomorphic map from 2 to A. By Corollary 1,
|dv/f|(x) > |df|(x), which is impossible, because it |df|(x) is maximal. =

27
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Normal families in complete generality

DEFINITION: A set of holomorphic maps fo : X — Y is called a normal
family if any sequence {f;} in {fa} has a subsequence converging unformly
on compacts.

THEOREM: Let fo,: X — Y be a family of holomorphic maps such that for
any point x € X there exists its neighbourhood with compact closure K C X
and a Kobayashi hyperbolic open subset Vi C Y such that all f, map K to
Vi.. Then fo is a normal family.

EXERCISE: Prove it.

28
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Fatou and Julia sets

DEFINITION: Let f: CPl— CP! be a rational map, and {f*} = {f, fo
f,fofolf,..} the set of all iterations of f. Fatou set of f is the set of
all points = & CPl such that for some neighbourhood U > z, the restriction
{f'|y} is a normal family, and Julia set is a complement to Fatou set.

EXAMPLE: For the map f(z) = 2, Julia set is the unit circle, and the
Fatou set is its complement (prove it).

DEFINITION: Attractor point z is a fixed point of f such that |df|(z) < 1;
the attractor basin for z is the set of all z € CP! such that lim; fi(z) = z.

CLAIM: For any fixed point z, its attractor basin belongs to the Fatou
set.

Proof: Indeed, since lim; f'(z) = z for any point in attractor basin U, {f*}
is a normal family on U (pointwise convergence is equivalent to uniform
convergence for bounded holomorphic functions by Arzela-Ascoli the-
orem). =

DEFINITION: Newton iteration for solving the polynomial equation g(z) =
0: a solution is obtained as a limit lim, f*(z), where f(z) = z — 9,('?. Indeed,
solutions of g(z) = 0 are attracting fixed points of f (check thlS§.

29




Riemann surfaces, lecture 8 M. Verbitsky

14223

Fatou and Julia sets for f(z) = “75

We apply the Newton iteration method to g(z) = 23 — 1.

r_.f"
i 9 SR
= AN 4 =0
e f e - oy § o
. | e,
% Qo
Yo~ o

Julia set (in white) for the map f(z) = 1"'2223 =z — gg,((’?). Coloring of Fatou

set according to attractor (the roots of g(z) = 23 — 1).
30
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Julia set for f(z) = 22— /=1

Julia set for f(z) = 22 — /=1 is called dendrite.
31
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Julia set for f(z) =224 0.124 0.6/—1
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San Marco fractal

San Marco fractal is the Julia set for f(z) = 22 — 0.75

33
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Mandelbrot set

DEFINITION: Mandelbrot set is the set of all ¢ such that O belongs to the
Fatou set of f(z2) = 22 +c.
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Properties of Fatou and Julia sets

REMARK: Let f: CP! — CP! be a holomorphic map. Then the Fatou
F(f) and Julia set J(f) of f are f-invariant.

LEMMA: (Iteration lemma) For each k, J(f) = J(f¥), where f* is k-th
iteration of f.

Proof. Step 1: Clearly, F(f*) c F(f), because {fk, f2k 3k ..} is compact
when {f, 2, f3,...} is compact.

Proof: Conversely, suppose that X = F(f*); then {f¥, f2k, 3k ..} is compact,
but then {f, fk+1, f2k+1 3k+1 1 is also compact as a continuous image
image of a compact (the composition is continuous in uniform topology),
same for {f2, fk1+2 f2k+2 £3k+2 1 andsoon. Then {f, f2, f3,...} is obtained
as a union of k compact sets. Therefore, F(f) C F(f*). m
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Properties of Fatou and Julia sets (2)

THEOREM: Julia set of polynomial map f: CP! — CP! is non-empty,
unless deg f < 1.

Proof: Let A ¢ CPL, and n(g) the number of critical points of a holomorphi
function g in A. Then n(g) = - 1_1 faA%’dz, and this number is locally
constant in uniform topology if g has no critical points on the boundary.
Since the number of critical points of fi istdeg f — 1, it converges to infinity,

hence f‘i cannot converge to a holomorphic function everywhere. =
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