Riemann surfaces, lecture 3

Riemann surfaces

lecture 3: Riemannian structures

Misha Verbitsky

Université Libre de Bruxelles
November 9, 2016

M. Verbitsky



Riemann surfaces, lecture 3 M. Verbitsky

Almost complex manifolds (reminder)

DEFINITION: Let I : TM — T M be an endomorphism of a tangent bundle
satisfying I2 = —1Id. Then I is called almost complex structure operator,
and the pair (M, I) an almost complex manifold.

EXAMPLE: M = C" with complex coordinates z; = z; + v/—1 y;, and
I1(d/dx;) = d/dy;, 1(d/dy;) = —d/dzx;.

DEFINITION: Let (V,I) be a space equipped with a complex structure
[: V—V, I?=—1d. The Hodge decomposition V @ C := V1.0 g y0.1
is defined in such a way that V1.0 is a /=1 -eigenspace of I, and VOl g3
—+/—1 -eigenspace.

DEFINITION: A function f: M — C on an almost complex manifold is
called holomorphic if df € ALO(M).

REMARK: For some almost complex manifolds, there are no holomorphic
functions at all, even locally.
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Complex manifolds and almost complex manifolds (reminder)

DEFINITION: Standard almost complex structure is I(d/dx;) = d/dy;,
I(d/dy;) = —d/dx; on C"™ with complex coordinates z;, = x; + vV—1 y;.

DEFINITION: A map V: (M,I)— (N,J) from an almost complex mani-
fold to an almost complex manifold is called holomorphic if W*(ALO(N)) ¢
ALO(AD).

REMARK: This is the same as dW being complex linear; for standard almost
complex structures, this is the same as the coordinate components of W
being holomorphic functions.

DEFINITION: A complex manifold is a manifold equipped with an at-
las with charts identified with open subsets of C" and transition functions
holomorphic.



Riemann surfaces, lecture 3 M. Verbitsky

Integrability of almost complex structures (reminder)

DEFINITION: An almost complex structure I on a manifold is called inte-
grable if any point of M has a neighbourhood U diffeomorphic to an open
subset of C", in such a way that the almost complex structure I is induced
by the standard one on U C C™.

CLAIM: Complex structure on a manifold M uniquely determines an
integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of
holomorphic functions O,;, and O, is determined by I as explained above. =
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Frobenius form (reminder)

CLAIM: Let B C TM be a sub-bundle of a tangent bundle of a smooth
manifold. Given vector fiels X,Y € B, consider their commutator [X,Y], and
lets W(X,Y) € TM/B be the projection of [X,Y] to TM/B. Then W(X,Y)
iIs C>°(M)-linear in X, Y:

V(fX,Y)=V(X, fY)=fV(X,Y).

Proof: Leibnitz identity gives [X, fY] = f[X,Y] + X(f)Y, and the second
term belongs to B, hence does not influence the projection to TM/B. =

DEFINITION: This form is called the Frobenius form of the sub-bundle
B C TM. This bundle is called involutive, or integrable, or holonomic if
v = 0.

EXERCISE: Give an example of a non-integrable sub-bundlile.
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Formal integrability (reminder)

DEFINITION: An almost complex structure I on (M,I) is called formally
integrable if [T1.9M, 71,01 ¢ 710, that is, if T1.O0M is involutive.

DEFINITION: The Frobenius form W € A29)M @ T M is called the Nijenhuis
tensor.

CLAIM: If a complex structure I on M is integrable, it is formally
integrable.

Proof: Locally, the bundle T1.9(M) is generated by d/dz;, where z; are com-
plex coordinates. These vector fields commute, hence satisfy [d/dz;,d/dz;] €
TL.O(M). This means that the Frobenius form vanishes. =

THEOREM: (Newlander-Nirenberg)
A complex structure I on M is integrable if and only if it is formally
integrable.

REMARK: In dimension 1, formal integrability is automatic. Indeed,
71001 is 1-dimensional, hence all skew-symmetric 2-forms on T1:9M vanish.
6
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Riemannian manifolds

DEFINITION: Let h € Sym2T*M be a symmetric 2-form on a manifold
which satisfies h(x,z) > 0 for any non-zero tangent vector . Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any z,y € M, and any path ~ : [a,b] — M connecting
x and y, consider the length of ~ defined as L(v) = fﬂ%\dt, where |‘é—¥| =
h(%X,9)1/2 Define the geodesic distance as d(z,y) = infy L(y), where
infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M =R", h =), da:i2. Prove that the geodesic distance
coincides with d(z,y) = |z — y|.

EXERCISE: Using partition of unity, prove that any manifold admits a
Riemannian structure.
7
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Hermitian structures

DEFINITION: A Riemannia metric h on an almost complex manifold is called
Hermitian if h(x,y) = h(lz, Iy).

REMARK: Given any Riemannian metric g on an almost complex manifold,
a Hermitian metric h can be obtained as h = g+ 1(g), where I(g)(x,y) =

g (x),1(y)).

REMARK: Let I be a complex structure operator on a real vector space
V, and g — a Hermitian metric. Then the bilinear form w(z,y) := g(x, Iy)
is skew-symmetric. Indeed, w(z,y) = g(z,Iy) = g(Iz, [%y) = —g(Iz,y) =
—w(y, ).

DEFINITION: A skew-symmetric form w(x,vy) is called an Hermitian form
on (V,1I).

REMARK: In the triple I,g,w, each element can recovered from the other
two.
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Conformal structure

DEFINITION: Let A, k' be Riemannian structures on M. These Riemannian
structures are called conformally equivalent if A’ = fh, where f is a positive
smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-
lence of Riemannian metrics.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian
manifold, and h, k'’ two Hermitian metrics. Then h and A’ are conformally
equivalent. Conversely, any metric conformally equivalent to Hermitian is
Hermitian.

REMARK: The last statement is clear from the definition, and true in any
dimension.

To prove that any two Hermitian metrics are conformally equivalent, we need
to consider the standard U(1)-action on a complex vector space (see
the next slide).
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Standard U(1)-action

DEFINITION: Let (V,I) be a real vector space equipped with a complex
structure, U(1) the group of unit complex numbers, U(1) = eV-1mt 1 c R
Define the action of U(1) on V as follows: p(t) = et{. This is called the
standard U(1)-action on a complex vector space. To prove that this
formula defines an action if U(1) = R/2x7Z, it suffices to show that 2™ =1,
which is clear from the eigenvalue decomposition of I.

CLAIM: Let (V,I,h) be a Hermitian vector space, and p: U(1) — GL(V)
the standard U(1)-action. Then h is U(1)-invariant.

Proof: It suffices to show that (h(p(t)m p(t)x) = 0. However, Ccli ”(a:)(t =ty =
I(eto!(2)), hence

© (o), p()) = h(I(p()2), p(D)2) + h(p(B)z, I(p(1)a)) = 2u(z,2) = 0.

10
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Hermitian metrics in dimg = 2.

COROLLARY: Let h, A’ be Hermitian metrics on a space (V,I) of real
dimension 2. Then h and /' are proportional.

Proof: h and k' are constant on any U(1)-orbit. Multiplying k'’ by a constant,
we may assume that h = k'’ on a U(1)-orbit U(1)x. Then h = k' everywhere,
because for each non-zero vector v € V, tv € U(1)x for some t € R, giving
h(v,v) =t 2h(tv, tv) =t 2k (tv, tv) = K/ (v,v). =

DEFINITION: Given two Hermitian forms h,h’ on (V,I), with dimpV = 2,
/
we denote by % a constant t such that A/ = th.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian
manifold, and h, k' two Hermitian metrics. Then h and k' are conformally
equivalent.

Proof: h/ = %’h. m
EXERCISE: Prove that Riemannian structure on M is uniquely defined

by its conformal class and its Riemannian volume form.
11
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Conformal structures and almost complex structures

REMARK: The following theorem implies that almost complex structures
on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let M be a 2-dimensional oriented manifold. Given a complex
structure I, let v be the conformal class of its Hermitian metric (it is unique
as shown above). Then v determines I uniquely.

Proof: Choose a Riemannian structure h compatible with the conformal struc-
ture v. Since M is oriented, the group SO(2) = U(1) acts in its tangent
bundle in a natural way: p: U(1) — GL(TM). Rescaling h does not change
this action, hence it is determined by v. Now, define I as p(v/—1); then
I?2 = p(—1) = —1Id. Since U(1) acts by isometries, this almost complex struc-
ture is compatible with A and with v. =

DEFINITION: A Riemann surface is a complex manifold of dimension 1,
or (equivalently) an oriented 2-manifold equipped with a conformal structure.

EXERCISE: Prove that a continuous map from one Riemannian surface
to another is holomorphic if and only if it preserves the conformal
structure almost everywhere.

12
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Homogeneous spaces

DEFINITION: A Lie group is a smooth manifold equipped with a group
structure such that the group operations are smooth. Lie group G acts on
a manifold M if the group action is given by the smooth map G x M — M.

DEFINITION: Let G be a Lie group acting on a manifold M transitively.
Then M is called a homogeneous space. For any x € M the subgroup
St.(G) ={g9g€ G | g(x) =} is called stabilizer of a point z, or isotropy
subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one
has M = G/H, where H = St;(G) is an isotropy subgroup.

Proof: The natural surjective map G — M putting g to ¢g(x) identifies M
with the space of conjugacy classes G/H. =

REMARK: Let g(x) =y. Then St;(G)J9 = Sty(G): all the isotropy groups
are conjugate.

13
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Isotropy representation

DEFINITION: Let M = G/H be a homogeneous space, x € M and St;(G)
the corresponding stabilizer group. The isotropy representation is the nat-
ural action of St;(G) on T, M.

DEFINITION: A tensor & on a homogeneous manifold M = G/H is called
iInvariant if it is mapped to itself by all diffeomorphisms which come from

geaq.

REMARK: Let &, be an isotropy invariant tensor on St;(G). Forany ye M
obtained as y = g(z), consider the tensor &, on T, M obtained as &, = g(P).
The choice of g is not unique, however, for another ¢’ € G which satisfies
g (z) = y, we have g = ¢’h where h € St;(G). Since @ is h-invariant, the
tensor ¢, is independent from the choice of g.

We proved

THEOREM: Homogeneous tensors on M = G/H are in bijective cor-
respondence with isotropy invariant tensors on 7,.M, for any x € M.

|
14
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Space forms

DEFINITION: Simply connected space form is a homogeneous Rieman-
nian manifold of one of the following types:

positive curvature: S"™ (an n-dimensional sphere), equipped with an
action of the group SO(n + 1) of rotations

zero curvature: R"™ (an n-dimensional Euclidean space), equipped with
an action of isometries

negative curvature: SO(1,n)/SO(n), equipped with the natural SO(1,n)-
action. This space is also called hyperbolic space, and in dimension 2 hy-
perbolic plane or Poincare plane or Bolyai-Lobachevsky plane

The Riemannian metric is defined in the next slide.

15



Riemann surfaces, lecture 3 M. Verbitsky

Riemannian metric on space forms

LEMMA: Let G = SO(n) act on R" in a natural way. Then there exists a
unique G-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g,¢ be two G-invariant symmetric 2-forms. Since S* 1 is an
orbit of G, we have g(z,z) = ¢(y,y) for any z,y € S*~1. Multiplying ¢ by
a constant, we may assume that g(z,z) = ¢'(z,z) for any z € S"~1. Then
gz, \x) = ¢z, \z) for any = € S 1, X\ € R; however, all vectors can be
written as \z. =

COROLLARY: Let M = G/H be a simply connected space form. Then M
admits a unique, up to a constant multiplier, G-invariant Riemannian

form.

Proof: The isotropy group is SO(n — 1) in all three cases, and the previous
lemma can be applied. =
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