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Almost complex manifolds (reminder)

DEFINITION: Let I : TM −→ TM be an endomorphism of a tangent bundle

satisfying I2 = − Id. Then I is called almost complex structure operator,

and the pair (M, I) an almost complex manifold.

EXAMPLE: M = Cn, with complex coordinates zi = xi +
√
−1 yi, and

I(d/dxi) = d/dyi, I(d/dyi) = −d/dxi.

DEFINITION: Let (V, I) be a space equipped with a complex structure

I : V −→ V , I2 = − Id. The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1

is defined in such a way that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a

−
√
−1 -eigenspace.

DEFINITION: A function f : M −→ C on an almost complex manifold is

called holomorphic if df ∈ Λ1,0(M).

REMARK: For some almost complex manifolds, there are no holomorphic

functions at all, even locally.
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Complex manifolds and almost complex manifolds (reminder)

DEFINITION: Standard almost complex structure is I(d/dxi) = d/dyi,

I(d/dyi) = −d/dxi on Cn with complex coordinates zi = xi +
√
−1 yi.

DEFINITION: A map Ψ : (M, I)−→ (N, J) from an almost complex mani-

fold to an almost complex manifold is called holomorphic if Ψ∗(Λ1,0(N)) ⊂
Λ1,0(M).

REMARK: This is the same as dΨ being complex linear; for standard almost

complex structures, this is the same as the coordinate components of Ψ

being holomorphic functions.

DEFINITION: A complex manifold is a manifold equipped with an at-

las with charts identified with open subsets of Cn and transition functions

holomorphic.
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Integrability of almost complex structures (reminder)

DEFINITION: An almost complex structure I on a manifold is called inte-

grable if any point of M has a neighbourhood U diffeomorphic to an open

subset of Cn, in such a way that the almost complex structure I is induced

by the standard one on U ⊂ Cn.

CLAIM: Complex structure on a manifold M uniquely determines an

integrable almost complex structure, and is determined by it.

Proof: Complex structure on a manifold M is determined by the sheaf of

holomorphic functions OM , and OM is determined by I as explained above.
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Frobenius form (reminder)

CLAIM: Let B ⊂ TM be a sub-bundle of a tangent bundle of a smooth

manifold. Given vector fiels X,Y ∈ B, consider their commutator [X,Y ], and

lets Ψ(X,Y ) ∈ TM/B be the projection of [X,Y ] to TM/B. Then Ψ(X,Y )

is C∞(M)-linear in X, Y :

Ψ(fX, Y ) = Ψ(X, fY ) = fΨ(X,Y ).

Proof: Leibnitz identity gives [X, fY ] = f [X,Y ] + X(f)Y , and the second

term belongs to B, hence does not influence the projection to TM/B.

DEFINITION: This form is called the Frobenius form of the sub-bundle

B ⊂ TM . This bundle is called involutive, or integrable, or holonomic if

Ψ = 0.

EXERCISE: Give an example of a non-integrable sub-bundle.
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Formal integrability (reminder)

DEFINITION: An almost complex structure I on (M, I) is called formally

integrable if [T1,0M,T1,0] ⊂ T1,0, that is, if T1,0M is involutive.

DEFINITION: The Frobenius form Ψ ∈ Λ2,0M⊗TM is called the Nijenhuis

tensor.

CLAIM: If a complex structure I on M is integrable, it is formally

integrable.

Proof: Locally, the bundle T1,0(M) is generated by d/dzi, where zi are com-

plex coordinates. These vector fields commute, hence satisfy [d/dzi, d/dzj] ∈
T1,0(M). This means that the Frobenius form vanishes.

THEOREM: (Newlander-Nirenberg)

A complex structure I on M is integrable if and only if it is formally

integrable.

REMARK: In dimension 1, formal integrability is automatic. Indeed,

T1,0M is 1-dimensional, hence all skew-symmetric 2-forms on T1,0M vanish.
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Riemannian manifolds

DEFINITION: Let h ∈ Sym2 T ∗M be a symmetric 2-form on a manifold
which satisfies h(x, x) > 0 for any non-zero tangent vector x. Then h is called
Riemannian metric, of Riemannian structure, and (M,h) Riemannian
manifold.

DEFINITION: For any x, y ∈ M , and any path γ : [a, b]−→M connecting
x and y, consider the length of γ defined as L(γ) =

∫
γ |
dγ
dt |dt, where |dγdt | =

h(dγdt ,
dγ
dt )

1/2. Define the geodesic distance as d(x, y) = infγ L(γ), where
infimum is taken for all paths connecting x and y.

EXERCISE: Prove that the geodesic distance satisfies triangle inequality
and defines metric on M.

EXERCISE: Prove that this metric induces the standard topology on
M.

EXAMPLE: Let M = Rn, h =
∑
i dx

2
i . Prove that the geodesic distance

coincides with d(x, y) = |x− y|.

EXERCISE: Using partition of unity, prove that any manifold admits a
Riemannian structure.
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Hermitian structures

DEFINITION: A Riemannia metric h on an almost complex manifold is called

Hermitian if h(x, y) = h(Ix, Iy).

REMARK: Given any Riemannian metric g on an almost complex manifold,

a Hermitian metric h can be obtained as h = g+ I(g), where I(g)(x, y) =

g(I(x), I(y)).

REMARK: Let I be a complex structure operator on a real vector space

V , and g – a Hermitian metric. Then the bilinear form ω(x, y) := g(x, Iy)

is skew-symmetric. Indeed, ω(x, y) = g(x, Iy) = g(Ix, I2y) = −g(Ix, y) =

−ω(y, x).

DEFINITION: A skew-symmetric form ω(x, y) is called an Hermitian form

on (V, I).

REMARK: In the triple I, g, ω, each element can recovered from the other

two.
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Conformal structure

DEFINITION: Let h, h′ be Riemannian structures on M . These Riemannian

structures are called conformally equivalent if h′ = fh, where f is a positive

smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-

lence of Riemannian metrics.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian

manifold, and h, h′ two Hermitian metrics. Then h and h′ are conformally

equivalent. Conversely, any metric conformally equivalent to Hermitian is

Hermitian.

REMARK: The last statement is clear from the definition, and true in any

dimension.

To prove that any two Hermitian metrics are conformally equivalent, we need

to consider the standard U(1)-action on a complex vector space (see

the next slide).
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Standard U(1)-action

DEFINITION: Let (V, I) be a real vector space equipped with a complex

structure, U(1) the group of unit complex numbers, U(1) = e
√
−1 πt, t ∈ R.

Define the action of U(1) on V as follows: ρ(t) = etI. This is called the

standard U(1)-action on a complex vector space. To prove that this

formula defines an action if U(1) = R/2πZ, it suffices to show that e2πI = 1,

which is clear from the eigenvalue decomposition of I.

CLAIM: Let (V, I, h) be a Hermitian vector space, and ρ : U(1)−→GL(V )

the standard U(1)-action. Then h is U(1)-invariant.

Proof: It suffices to show that d
dt(h(ρ(t)x, ρ(t)x) = 0. However, d

dte
tI(x)

∣∣∣t=t0 =

I(et0I(x)), hence

d

dt
(h(ρ(t)x, ρ(t)x) = h(I(ρ(t)x), ρ(t)x) + h(ρ(t)x, I(ρ(t)x)) = 2ω(x, x) = 0.
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Hermitian metrics in dimR = 2.

COROLLARY: Let h, h′ be Hermitian metrics on a space (V, I) of real

dimension 2. Then h and h′ are proportional.

Proof: h and h′ are constant on any U(1)-orbit. Multiplying h′ by a constant,

we may assume that h = h′ on a U(1)-orbit U(1)x. Then h = h′ everywhere,

because for each non-zero vector v ∈ V , tv ∈ U(1)x for some t ∈ R, giving

h(v, v) = t−2h(tv, tv) = t−2h′(tv, tv) = h′(v, v).

DEFINITION: Given two Hermitian forms h, h′ on (V, I), with dimR V = 2,

we denote by h′
h a constant t such that h′ = th.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian

manifold, and h, h′ two Hermitian metrics. Then h and h′ are conformally

equivalent.

Proof: h′ = h′
hh.

EXERCISE: Prove that Riemannian structure on M is uniquely defined

by its conformal class and its Riemannian volume form.
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Conformal structures and almost complex structures

REMARK: The following theorem implies that almost complex structures
on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let M be a 2-dimensional oriented manifold. Given a complex
structure I, let ν be the conformal class of its Hermitian metric (it is unique
as shown above). Then ν determines I uniquely.

Proof: Choose a Riemannian structure h compatible with the conformal struc-
ture ν. Since M is oriented, the group SO(2) = U(1) acts in its tangent
bundle in a natural way: ρ : U(1)−→GL(TM). Rescaling h does not change
this action, hence it is determined by ν. Now, define I as ρ(

√
−1 ); then

I2 = ρ(−1) = − Id. Since U(1) acts by isometries, this almost complex struc-
ture is compatible with h and with ν.

DEFINITION: A Riemann surface is a complex manifold of dimension 1,
or (equivalently) an oriented 2-manifold equipped with a conformal structure.

EXERCISE: Prove that a continuous map from one Riemannian surface
to another is holomorphic if and only if it preserves the conformal
structure almost everywhere.
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Homogeneous spaces

DEFINITION: A Lie group is a smooth manifold equipped with a group

structure such that the group operations are smooth. Lie group G acts on

a manifold M if the group action is given by the smooth map G×M −→M .

DEFINITION: Let G be a Lie group acting on a manifold M transitively.

Then M is called a homogeneous space. For any x ∈ M the subgroup

Stx(G) = {g ∈ G | g(x) = x} is called stabilizer of a point x, or isotropy

subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one

has M = G/H, where H = Stx(G) is an isotropy subgroup.

Proof: The natural surjective map G−→M putting g to g(x) identifies M

with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then Stx(G)g = Sty(G): all the isotropy groups

are conjugate.
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Isotropy representation

DEFINITION: Let M = G/H be a homogeneous space, x ∈ M and Stx(G)

the corresponding stabilizer group. The isotropy representation is the nat-

ural action of Stx(G) on TxM .

DEFINITION: A tensor Φ on a homogeneous manifold M = G/H is called

invariant if it is mapped to itself by all diffeomorphisms which come from

g ∈ G.

REMARK: Let Φx be an isotropy invariant tensor on Stx(G). For any y ∈M
obtained as y = g(x), consider the tensor Φy on TyM obtained as Φy := g(Φ).

The choice of g is not unique, however, for another g′ ∈ G which satisfies

g′(x) = y, we have g = g′h where h ∈ Stx(G). Since Φ is h-invariant, the

tensor Φy is independent from the choice of g.

We proved

THEOREM: Homogeneous tensors on M = G/H are in bijective cor-

respondence with isotropy invariant tensors on TxM, for any x ∈ M .
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Space forms

DEFINITION: Simply connected space form is a homogeneous Rieman-

nian manifold of one of the following types:

positive curvature: Sn (an n-dimensional sphere), equipped with an

action of the group SO(n+ 1) of rotations

zero curvature: Rn (an n-dimensional Euclidean space), equipped with

an action of isometries

negative curvature: SO(1, n)/SO(n), equipped with the natural SO(1, n)-

action. This space is also called hyperbolic space, and in dimension 2 hy-

perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

The Riemannian metric is defined in the next slide.
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Riemannian metric on space forms

LEMMA: Let G = SO(n) act on Rn in a natural way. Then there exists a

unique G-invariant symmetric 2-form: the standard Euclidean metric.

Proof: Let g, g′ be two G-invariant symmetric 2-forms. Since Sn−1 is an

orbit of G, we have g(x, x) = g(y, y) for any x, y ∈ Sn−1. Multiplying g′ by

a constant, we may assume that g(x, x) = g′(x, x) for any x ∈ Sn−1. Then

g(λx, λx) = g′(λx, λx) for any x ∈ Sn−1, λ ∈ R; however, all vectors can be

written as λx.

COROLLARY: Let M = G/H be a simply connected space form. Then M

admits a unique, up to a constant multiplier, G-invariant Riemannian

form.

Proof: The isotropy group is SO(n − 1) in all three cases, and the previous

lemma can be applied.
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