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Hermitian and conformal structures (reminder)

DEFINITION: Let h ∈ Sym2 T ∗M be a symmetric 2-form on a manifold

which satisfies h(x, x) > 0 for any non-zero tangent vector x. Then h is called

Riemannian metric, of Riemannian structure, and (M,h) Riemannian

manifold.

DEFINITION: A Riemannia metric h on an almost complex manifold is called

Hermitian if h(x, y) = h(Ix, Iy).

DEFINITION: Let h, h′ be Riemannian structures on M . These Riemannian

structures are called conformally equivalent if h′ = fh, where f is a positive

smooth function.

DEFINITION: Conformal structure on M is a class of conformal equiva-

lence of Riemannian metrics.

CLAIM: Let I be an almost complex structure on a 2-dimensional Riemannian

manifold, and h, h′ two Hermitian metrics. Then h and h′ are conformally

equivalent. Conversely, any metric conformally equivalent to Hermitian is

Hermitian.
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Conformal structures and almost complex structures (reminder)

REMARK: The following theorem implies that almost complex structures

on a 2-dimensional oriented manifold are equivalent to conformal structures.

THEOREM: Let M be a 2-dimensional oriented manifold. Given a complex

structure I, let ν be the conformal class of its Hermitian metric (it is unique

as shown above). Then ν determines I uniquely.

Proof: Choose a Riemannian structure h compatible with the conformal struc-

ture ν. Since M is oriented, the group SO(2) = U(1) acts in its tangent

bundle in a natural way: ρ : U(1)−→GL(TM). Rescaling h does not change

this action, hence it is determined by ν. Now, define I as ρ(
√
−1 ); then

I2 = ρ(−1) = − Id. Since U(1) acts by isometries, this almost complex struc-

ture is compatible with h and with ν.

DEFINITION: A Riemann surface is a complex manifold of dimension 1,

or (equivalently) an oriented 2-manifold equipped with a conformal structure.
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Homogeneous spaces (reminder)

DEFINITION: A Lie group is a smooth manifold equipped with a group

structure such that the group operations are smooth. Lie group G acts on

a manifold M if the group action is given by the smooth map G×M −→M .

DEFINITION: Let G be a Lie group acting on a manifold M transitively.

Then M is called a homogeneous space. For any x ∈ M the subgroup

Stx(G) = {g ∈ G | g(x) = x} is called stabilizer of a point x, or isotropy

subgroup.

CLAIM: For any homogeneous manifold M with transitive action of G, one

has M = G/H, where H = Stx(G) is an isotropy subgroup.

Proof: The natural surjective map G−→M putting g to g(x) identifies M

with the space of conjugacy classes G/H.

REMARK: Let g(x) = y. Then Stx(G)g = Sty(G): all the isotropy groups

are conjugate.
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Space forms (reminder)

DEFINITION: Simply connected space form is a homogeneous Rieman-

nian manifold of one of the following types:

positive curvature: Sn (an n-dimensional sphere), equipped with an

action of the group SO(n+ 1) of rotations

zero curvature: Rn (an n-dimensional Euclidean space), equipped with

an action of isometries

negative curvature: SO(1, n)/SO(n), equipped with the natural SO(1, n)-

action. This space is also called hyperbolic space, and in dimension 2 hy-

perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

The Riemannian metric is defined by the following lemma.

LEMMA: Let M = G/H be a simply connected space form. Then M admits

a unique, up to a constant multiplier, G-invariant Riemannian form.
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Poincaré-Koebe uniformization theorem

DEFINITION: A Riemannian manifold of constant curvature is a Rie-

mannian manifold which is locally isometric to a space form.

THEOREM: (Poincaré-Koebe uniformization theorem) Let M be a Rie-

mann surface. Then M admits a unique complete metric of constant

curvature in the same conformal class.

COROLLARY: Any Riemann surface is a quotient of a space form X

by a discrete group of isometries Γ ⊂ Iso(X).

COROLLARY: Any simply connected Riemann surface is conformally

equivalent to a space form.

REMARK: We shall prove some cases of the uniformization theorem in later

lectures.

Today’s subject: classify conformal automorphisms of all space forms.
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Some low-dimensional Lie group isomorphisms

DEFINITION: Lie algebra of a Lie group G is the Lie algebra Lie(G) of left-
invariant vector fields. Adjoint representation of G is the standard action
of G on Lie(G). For a Lie group G = GL(n), SL(n), etc., PGL(n), PSL(n),
etc. denote the image of G in GL(Lie(G)) with respect to the adjoint action.

REMARK: This is the same as a quotient G/Z by the centre of G.

DEFINITION: Define SO(1,2) as the group of orthogonal matrices on a
3-dimensional space equipped with a scalar product of signature (1,2), and
U(1,1) as the group of complex linear maps C2 −→ C2 preserving a pseudio-
Hermitian form of signature (1,1).

THEOREM: The groups PU(1,1), PSL(2,R) and SO(1,2) are isomor-
phic.

Proof: Isomorphism PU(1,1) = SO(1,2) will be established later in this lec-
ture. To see PSL(2,R) ∼= SO(1,2), consider the Killing form κ on the Lie
algebra sl(2,R), a, b−→ Tr(ab). Check that it has signature (1,2). Then
the image of SL(2,R) in automorphisms of its Lie algebra is mapped
to SO(sl(2,R), κ) = SO(1,2). Both groups are 3-dimensional, hence it is an
isomorphism.
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Laurent power series

THEOREM: (Laurent theorem)

Let f be a holomorphic function on an annulus (that is, a ring)

R = {z | α < |z| < β}.

Then f can be expressed as a Laurent power series f(z) =
∑
i∈Z z

iai
converging in R.

Proof: Same as Cauchy formula.

REMARK: This theorem remains valid if α = 0 and β =∞.

REMARK: A function ϕ : C∗ −→ C uniquely determines its Laurent

power series. Indeed, residue of zkϕ in 0 is
√
−1 2πa−k−1.

REMARK: Let ϕ : C∗ −→ C be a holomorphic function, and ϕ =
∑
i∈Z z

iai
its Laurent power series. Then ψ(z) := ϕ(z−1) has Laurent polynomial

ψ =
∑
i∈Z z

−iai.
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Affine coordinates on CP1

DEFINITION: We identify CP1 with the set of pairs x : y defined up to

equivalence x : y ∼ λx : λy, for each λ ∈ C∗. This representation is called

homogeneous coordimates. Affine coordinates are 1 : z for x 6= 0, z = y/x

and z : 1 for y 6= 0, z = x/y. The corresponding gluing functions are given by

the map z −→ z−1.

DEFINITION: Meromorphic function is a quotient f/g, where f, g are

holomorphic and g 6= 0.

REMARK: A holomorphic map C−→ CP1 is the same as a pair of maps

f : g up to equivalence f : g ∼ fh : gh. In other words, holomorphic maps

C−→ CP1 are identified with meromorphic functions on C.

REMARK: In homogeneous coordinates, an element

(
a b
c d

)
∈ PSL(2,C)

acts as x : y −→ ax + by : cx + dy. Therefore, in affine coordinates it acts as

z −→ az+b
cz+d.
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Möbius transforms

DEFINITION: Möbius transform is a conformal (that is, holomorphic)

diffeomorphism of CP1.

REMARK: The group PGL(2,C) acts on CP1 holomorphially.

The following theorem will be proven later in this lecture.

THEOREM: The natural map from PGL(2,C) to the group of Möbius

transforms is an isomorphism.

Claim 1: Let ϕ : CP1 −→ CP1 be a holomorphic automorphism, ϕ0 :

C−→ CP1 its restriction to the chart z : 1, and ϕ∞ : C−→ CP1 its restric-

tion 1 : z. We consider ϕ0, ϕ∞ as meromorphic functions on C. Then

ϕ∞ = ϕ0(z−1)−1.
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Möbius transforms and PGL(2,C)

THEOREM: The natural map from PGL(2,C) to the group Aut(CP1)
of Möbius transforms is an isomorphism.

Proof. Step 1: Let ϕ ∈ Aut(CP1). Since PSL(2,C) acts transitively on
pairs of points x 6= y in CP1, by composing ϕ with an appropriate element
in PGL(2,C) we can assume that ϕ(0) = 0 and ϕ(∞ = ∞. This means that
we may consider the restrictions ϕ0 and ϕ∞ of ϕ to the affine charts as a
holomorphic functions on these charts, ϕ0, ϕ∞ : C−→ C.

Step 2: Let ϕ0 =
∑
i>0 aiz

i, a1 6= 0. Claim 1 gives

ϕ∞(z) = ϕ0(z−1)−1 = a1z(1 +
∑
i>2

ai
a1
z−i)−1.

Unless ai = 0 for all i > 2, this Laurent series has singularities in 0 and
cannot be holomorphic. Therefore ϕ0 is a linear function, and it belongs
to PGL(2,C).

Lemma 1: Let ϕ be a Möbius transform fixing ∞ ∈ CP1. Then ϕ(z) = az+b
for some a, b ∈ C and all z = z : 1 ∈ CP1.
Proof: Let A ∈ PGL(2,C) be a map acting on C = CP1\∞ as parallel trans-
port mapping ϕ(0) to 0. Then ϕ ◦ A is a Moebius transform which fixes ∞
and 0. As shown in Step 2 above, it is a linear function.
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Properties of Möbius transform

DEFINITION: A circle in S2 is an orbit of a 1-parametric isometric rotation

subgroup U ⊂ PGL(2,C).

PROPOSITION: The action of PGL(2,C) on CP1 maps circles to cir-

cles.

Proof. Step 1: Consider a pseudo-Hermitian form h on V = C2 of signature

(1,1). Let h+ be a positive definite Hermitian form on V . There exists

a basis x, y ∈ V such that h+ =
√
−1 x ⊗ x +

√
−1 y ⊗ y (that is, x, y is

orthonormal with respect to h+) and h = −
√
−1 αx ⊗ x +

√
−1 βy ⊗ y, with

α > 0, β < 0 real numbers. Then {z | h(z, z) = 0} is invariant under the

rotation x, y −→ x, e
√
−1 θy, hence it is a circle.

Step 2: Clearly, all circles are obtained this way.

Step 3: PGL(2,C) maps pseudo-Hermitian forms to pseudo-Hermitian forms

of the same signature, and therefore preserves circles.
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Orbits of compact one-parametric subgroups in PSL(2,C)

LEMMA: Let G ∼= S1 be a compact one-parametric subgroup in PSL(2,C).

Then any G-orbit in CP1 is a circle.

Proof. Step 1: Let V = C2, and consider the natural projection map π :

SL(V )−→ PSL(2,C) = SL(V )/±1. Then G̃ = π−1(G) is compact. Choose a

G̃-invariant Hermitian metric h1 on V , and let h be the standard Hermitiann

metric. Since GL(2,C) acts on the set of Hermitian metrics transitively (prove

it), there exists u ∈ GL(V ) such that u(h) = h1. By definition, circles on CP1

are orbits of one-parametric subgroups in U(V, h). Since u(G̃) is a one-

parametric subgroup in U(V, h), its orbit is a circle.

Step 2: From Step 1, we obtain that any orbit of G is u−1(circle). Since u−1

is a Moebius transform, and Moebius transforms preserve circles, this orbit is

a circle.

13



Riemann surfaces, lecture 4 M. Verbitsky

Conformal automorphisms of C

THEOREM: (Riemann removable singularity theorem) Let f : C−→ C
be a continuous function which is holomorphic outside of a finite set. Then

f is holomorphic.

Proof: Use the Cauchy formula.

THEOREM: All conformal automorphisms of C can be expressed by

z −→ az + b, where a, b are complex numbers, a 6= 0.

Proof: Let ϕ be a conformal automorphism of C. The Riemann removable

singularity theorem implies that ϕ can be extended to a holomorphic au-

tomorphism of CP1. Indeed, CP1 is obtained as a 1-point compactification

of C, and any continuous map from C to C is extended to a continuous map

on CP1. Now, Lemma 1 implies that ϕ(z) = az + b.
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